IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 可视化神经网络实验报告训练图像识别神经网络 -> 正文阅读

[人工智能]可视化神经网络实验报告训练图像识别神经网络

如何训练神经网络

1、先别着急写代码训练神经网络前,别管代码,先从预处理数据集开始。我们先花几个小时的时间,了解数据的分布并找出其中的规律。

Andrej有一次在整理数据时发现了重复的样本,还有一次发现了图像和标签中的错误。所以先看一眼数据能避免我们走很多弯路。

由于神经网络实际上是数据集的压缩版本,因此您将能够查看网络(错误)预测并了解它们的来源。如果你的网络给你的预测看起来与你在数据中看到的内容不一致,那么就会有所收获。

一旦从数据中发现规律,可以编写一些代码对他们进行搜索、过滤、排序。把数据可视化能帮助我们发现异常值,而异常值总能揭示数据的质量或预处理中的一些错误。

2、设置端到端的训练评估框架处理完数据集,接下来就能开始训练模型了吗?并不能!下一步是建立一个完整的训练+评估框架。在这个阶段,我们选择一个简单又不至于搞砸的模型,比如线性分类器、CNN,可视化损失。

获得准确度等衡量模型的标准,用模型进行预测。这个阶段的技巧有:· 固定随机种子使用固定的随机种子,来保证运行代码两次都获得相同的结果,消除差异因素。· 简单化在此阶段不要有任何幻想,不要扩增数据。

扩增数据后面会用到,但是在这里不要使用,现在引入只会导致错误。

· 在评估中添加有效数字在绘制测试集损失时,对整个测试集进行评估,不要只绘制批次测试损失图像,然后用Tensorboard对它们进行平滑处理。· 在初始阶段验证损失函数验证函数是否从正确的损失值开始。

例如,如果正确初始化最后一层,则应在softmax初始化时测量-log(1/n_classes)。· 初始化正确初始化最后一层的权重。如果回归一些平均值为50的值,则将最终偏差初始化为50。

如果有一个比例为1:10的不平衡数据集,请设置对数的偏差,使网络预测概率在初始化时为0.1。正确设置这些可以加速模型的收敛。· 人类基线监控除人为可解释和可检查的损失之外的指标。

尽可能评估人的准确性并与之进行比较。或者对测试数据进行两次注释,并且对于每个示例,将一个注释视为预测,将第二个注释视为事实。

· 设置一个独立于输入的基线最简单的方法是将所有输入设置为零,看看模型是否学会从输入中提取任何信息。· 过拟合一个batch增加了模型的容量并验证我们可以达到的最低损失。

· 验证减少训练损失尝试稍微增加数据容量。

谷歌人工智能写作项目:神经网络伪原创

bml是什么意思

百度机器学习云平台(Baidu Machine Learning,简称BML)好文案。百度机器学习云平台是百度公司多年以来大规模分布式机器学习方面的技术优势积累。

不仅提供了丰富、高效、成熟的机器学习算法,还打通了机器学习的全流程。应用方向:1、用户可以便捷地完成从原始数据格式化、统计、训练、评估、预测、发布模型服务等应用。

2、BML还提供前沿的深度学习研发成果,从普通DNN到Word2Vec训练有全面的支持,帮助用户训练自己的神经网络并且对训练结果进行可视化,方便进行深度学习的训练过程以及结果的可视化。

3、BML还为公有云的企业级用户提供了成套的解决方案,快速接入解决企业的实际问题,帮助用户挖掘大数据的价值。

扩展资料BML优点:1、稳定性相对很好:BML的应用影响着网站的使用,人们平时常见的虚拟主机都是多个网站共享一台主机,如果其中的一个网站受到攻击,那么就会影响到其他的网站。

但是BML是一个集群式的服务器,稳定性相对来说较高。

2、无限的容量:云平台是全网服务,几乎综合了全球终端的“云”提供的容量,不再局限于一台或者几台服务器之间,所以在某种程度上可以说云计算的存贮是永无止境的。

3、更安全可靠:服务器的安全对于用户来说是非常重要的,因为一旦服务器出现故障,网站就不能进行正常的运营。但是云平台一般不会出现这种情况的,就算是网站的运营出现了问题,云平台也会自动转移到其他的机器上。

参考资料来源:百度百科-BML。

如何看MATLAB运行神经网络的结果

如何看MATLAB运行神经网络的结果从图中Neural Network可以看出,你的网络结构是两个隐含层,2-3-1-1结构的网络,算法是traindm,显示出来的误差变化为均方误差值mse。

经过482次迭代循环完成训练,耗时5秒。相同计算精度的话,训练次数越少,耗时越短,网络结构越优秀。

达到设定的网络精度0.001的时候,误差下降梯度为0.0046,远大于默认的1e-5,说明此时的网络误差仍在快速下降,所以可以把训练精度目标再提高一些,比如设为0.0001或者1e-5。

求助:神经网络两次训练的结果不一样

神经网络两次训练的结果不一样,这是因为每次训练的迭代初值不相同(是随机的),所以得到的结果是有差异的。一般的话,软件开启第一次时,运行得到结果是比较正确的。

例如:用BP神经网络预测某地区人口数第一次运行:第二次运行:

用python编写的神经网络结果怎么可视化

学习人工智能时,我给自己定了一个目标--用Python写一个简单的神经网络。为了确保真得理解它,我要求自己不使用任何神经网络库,从头写起。多亏了Andrew Trask写得一篇精彩的博客,我做到了!

下面贴出那九行代码:在这篇文章中,我将解释我是如何做得,以便你可以写出你自己的。我将会提供一个长点的但是更完美的源代码。

matlab神经网络工具箱具体怎么用

为了看懂师兄的文章中使用的方法,研究了一下神经网络昨天花了一天的时间查怎么写程序,但是费了半天劲,不能运行,百度知道里倒是有一个,可以运行的,先贴着做标本% 生成训练样本集clear all;clc;P=[110 0.807 240 0.2 15 1 18 2 1.5;110 2.865 240 0.1 15 2 12 1 2;110 2.59 240 0.1 12 4 24 1 1.5;220 0.6 240 0.3 12 3 18 2 1;220 3 240 0.3 25 3 21 1 1.5;110 1.562 240 0.3 15 3 18 1 1.5;110 0.547 240 0.3 15 1 9 2 1.5];0 1.318 300 0.1 15 2 18 1 2];T=[54248 162787 168380 314797;28614 63958 69637 82898;86002 402710 644415 328084;230802 445102 362823 335913;60257 127892 76753 73541;34615 93532 80762 110049;56783 172907 164548 144040];@907 117437 120368 130179];m=max(max(P));n=max(max(T));P=P'/m;T=T'/n;%-------------------------------------------------------------------------%pr(1:9,1)=0; %输入矢量的取值范围矩阵pr(1:9,2)=1;bpnet=newff(pr,[12 4],{'logsig', 'logsig'}, 'traingdx', 'learngdm');%建立BP神经网络, 12个隐层神经元,4个输出神经元%tranferFcn属性 'logsig' 隐层采用Sigmoid传输函数%tranferFcn属性 'logsig' 输出层采用Sigmoid传输函数%trainFcn属性 'traingdx' 自适应调整学习速率附加动量因子梯度下降反向传播算法训练函数%learn属性 'learngdm' 附加动量因子的梯度下降学习函数 net.trainParam.epochs=1000;%允许最大训练步数2000步=0.001; %训练目标最小误差0.001=10; %每间隔100步显示一次训练结果=0.05; %学习速率0.05bpnet=train(bpnet,P,T);%-------------------------------------------------------------------------p=[110 1.318 300 0.1 15 2 18 1 2];p=p'/m;r=sim(bpnet,p);R=r'*n;display(R);运行的结果是出现这样的界面点击performance,training state,以及regression分别出现下面的界面再搜索,发现可以通过神经网络工具箱来创建神经网络,比较友好的GUI界面,在输入命令里面输入nntool,就可以开始了。

点击import之后就出现下面的具体的设置神经网络参数的对话界面,这是输入输出数据的对话窗首先是训练数据的输入然后点击new,创建一个新的神经网络network1,并设置其输入输出数据,包括名称,神经网络的类型以及隐含层的层数和节点数,还有隐含层及输出层的训练函数等点击view,可以看到这是神经网络的可视化直观表达创建好了一个network之后,点击open,可以看到一个神经网络训练,优化等的对话框,选择了输入输出数据后,点击train,神经网络开始训练,如右下方的图,可以显示动态结果下面三个图形则是点击performance,training state以及regression而出现的下面就是simulate,输入的数据是用来检验这个网络的数据,output改一个名字,这样就把输出数据和误差都存放起来了在主界面上点击export就能将得到的out结果输入到matlab中并查看下图就是输出的两个outputs结果还在继续挖掘,to be continue……

?

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-10-08 20:42:06  更:2022-10-08 20:45:25 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/25 20:52:16-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码