IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 动手学习深度学习 07:现代卷积神经网络(AlexNet、VGG、NiN、GoogleNet、批量归一化、ResNet、DenseNet) -> 正文阅读

[人工智能]动手学习深度学习 07:现代卷积神经网络(AlexNet、VGG、NiN、GoogleNet、批量归一化、ResNet、DenseNet)

01 深度卷积神经网络-AlexNet

事实上,在上世纪90年代初到2012年之间的大部分时间里,神经网络往往被其他机器学习方法超越,如支持向量机(support vector machines)。

经典机器学习的流水线看起来更像下面这样:

  1. 获取一个有趣的数据集。在早期,收集这些数据集需要昂贵的传感器(在当时最先进的图像也就100万像素)。
  2. 根据光学、几何学、其他知识以及偶然的发现,手工对特征数据集进行预处理。
  3. 通过标准的特征提取算法,如SIFT(尺度不变特征变换) [Lowe, 2004]和SURF(加速鲁棒特征) [Bay et al., 2006]或其他手动调整的流水线来输入数据。
  4. 将提取的特征送入最喜欢的分类器中(例如线性模型或其它核方法),以训练分类器。

1、学习表征

过去,数据和硬件方面的发展:

在这里插入图片描述

深度卷积神经网络的突破出现在2012年。突破可归因于两个关键因素。

1.1、缺少的成分:数据

限于早期计算机有限的存储和90年代有限的研究预算,大部分研究只基于小的公开数据集。

这一状况在2010年前后兴起的大数据浪潮中得到改善。2009年,ImageNet数据集发布,并发起ImageNet挑战赛:要求研究人员从100万个样本中训练模型,以区分1000个不同类别的对象。ImageNet数据集由斯坦福教授李飞飞小组的研究人员开发,利用谷歌图像搜索(Google Image Search)对每一类图像进行预筛选,并利用亚马逊众包(Amazon Mechanical Turk)来标注每张图片的相关类别。

1.2、缺少的成分:硬件

深度学习对计算资源要求很高,训练可能需要数百个迭代轮数,每次迭代都需要通过代价高昂的许多线性代数层传递数据。这也是为什么在20世纪90年代至21世纪初,优化凸目标的简单算法是研究人员的首选。然而,用GPU训练神经网络改变了这一格局。图形处理器(Graphics Processing Unit,GPU)**早年用来加速图形处理,使电脑游戏玩家受益。GPU可优化高吞吐量的4×4矩阵和向量乘法,从而服务于基本的图形任务。幸运的是,这些数学运算与卷积层的计算惊人地相似。由此,英伟达(NVIDIA)和ATI已经开始为通用计算操作优化gpu,甚至把它们作为通用GPU(general-purpose GPUs,GPGPU)来销售。

那么GPU比CPU强在哪里呢?

  • 首先,我们深度理解一下中央处理器(Central Processing Unit,CPU)的核心。 CPU的每个核心都拥有高时钟频率的运行能力,和高达数MB的三级缓存(L3Cache)。 它们非常适合执行各种指令,具有分支预测器、深层流水线和其他使CPU能够运行各种程序的功能。 然而,这种明显的优势也是它的致命弱点:通用核心的制造成本非常高。 它们需要大量的芯片面积、复杂的支持结构(内存接口、内核之间的缓存逻辑、高速互连等等),而且它们在任何单个任务上的性能都相对较差。 现代笔记本电脑最多有4核,即使是高端服务器也很少超过64核,因为它们的性价比不高。

  • 相比于CPU,GPU由100~1000个小的处理单元组成(NVIDIA、ATI、ARM和其他芯片供应商之间的细节稍有不同),通常被分成更大的组(NVIDIA称之为warps)。 虽然每个GPU核心都相对较弱,有时甚至以低于1GHz的时钟频率运行,但庞大的核心数量使GPU比CPU快几个数量级。 例如,NVIDIA最近一代的Ampere GPU架构为每个芯片提供了高达312 TFlops的浮点性能,而CPU的浮点性能到目前为止还没有超过1 TFlops。 之所以有如此大的差距**,原因其实很简单:(功耗、内核、内存带宽)**

    • 首先,功耗往往会随时钟频率呈二次方增长。 对于一个CPU核心,假设它的运行速度比GPU快4倍,你可以使用16个GPU内核取代,那么GPU的综合性能就是CPU的16×1/4=4倍。
    • 其次,GPU内核要简单得多,这使得它们更节能。
    • 此外,深度学习中的许多操作需要相对较高的内存带宽,而GPU拥有10倍于CPU的带宽。

回到2012年的重大突破,当Alex Krizhevsky和Ilya Sutskever实现了可以在GPU硬件上运行的深度卷积神经网络时,一个重大突破出现了。他们意识到卷积神经网络中的计算瓶颈:卷积和矩阵乘法,都是可以在硬件上并行化的操作。 于是,他们使用两个显存为3GB的NVIDIA GTX580 GPU实现了快速卷积运算。他们的创新cuda-convnet几年来它一直是行业标准,并推动了深度学习热潮。

2、AlexNet

2012年,AlexNet横空出世。它首次证明了学习到的特征可以超越手工设计的特征。它一举打破了计算机视觉研究的现状。 AlexNet使用了8层卷积神经网络,并以很大的优势赢得了2012年ImageNet图像识别挑战赛。
在这里插入图片描述

2.1、模型设计

对比AlexNet与LeNet:

在这里插入图片描述

复杂度对比
在这里插入图片描述

  • FLOPS:注意全大写,是floating point operations per second的缩写,意指每秒浮点运算次数,理解为计算速度。是一个衡量硬件性能的指标。
  • FLOPs:注意s小写,是floating point operations的缩写(s表复数),意指浮点运算数,理解为计算量。可以用来衡量算法/模型的复杂度。

2.2、激活函数

此外,AlexNet将sigmoid激活函数改为更简单的ReLU激活函数。

2.3、容量控制和预处理

  • AlexNet通过暂退法控制全连接层的模型复杂度,而LeNet只使用了权重衰减。

  • AlexNet在训练时增加了大量的图像增强数据,如翻转、裁切和变色。 这使得模型更健壮,更大的样本量有效地减少了过拟合。

AlexNet实现:

import torch
from torch import nn
from d2l import torch as d2l

net = nn.Sequential(
    # 这里,我们使用一个11*11的更大窗口来捕捉对象。
    # 同时,步幅为4,以减少输出的高度和宽度。
    # 另外,输出通道的数目远大于LeNet
    nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    # 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数
    nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    # 使用三个连续的卷积层和较小的卷积窗口。
    # 除了最后的卷积层,输出通道的数量进一步增加。
    # 在前两个卷积层之后,汇聚层不用于减少输入的高度和宽度
    nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nn.Flatten(),
    # 这里,全连接层的输出数量是LeNet中的好几倍。使用dropout层来减轻过拟合
    nn.Linear(6400, 4096), nn.ReLU(),
    nn.Dropout(p=0.5),
    nn.Linear(4096, 4096), nn.ReLU(),
    nn.Dropout(p=0.5),
    # 最后是输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000
    nn.Linear(4096, 10))

我们构造一个高度和宽度都为224的单通道数据,来观察每一层输出的形状。 它与 图7.1.2中的AlexNet架构相匹配。

X = torch.randn(1, 1, 224, 224)
for layer in net:
    X=layer(X)
    print(layer.__class__.__name__,'output shape:\t',X.shape)

结果展示:

Conv2d output shape:	 torch.Size([1, 96, 54, 54])
ReLU output shape:	 torch.Size([1, 96, 54, 54])
MaxPool2d output shape:	 torch.Size([1, 96, 26, 26])
Conv2d output shape:	 torch.Size([1, 256, 26, 26])
ReLU output shape:	 torch.Size([1, 256, 26, 26])
MaxPool2d output shape:	 torch.Size([1, 256, 12, 12])
Conv2d output shape:	 torch.Size([1, 384, 12, 12])
ReLU output shape:	 torch.Size([1, 384, 12, 12])
Conv2d output shape:	 torch.Size([1, 384, 12, 12])
ReLU output shape:	 torch.Size([1, 384, 12, 12])
Conv2d output shape:	 torch.Size([1, 256, 12, 12])
ReLU output shape:	 torch.Size([1, 256, 12, 12])
MaxPool2d output shape:	 torch.Size([1, 256, 5, 5])
Flatten output shape:	 torch.Size([1, 6400])
Linear output shape:	 torch.Size([1, 4096])
ReLU output shape:	 torch.Size([1, 4096])
Dropout output shape:	 torch.Size([1, 4096])
Linear output shape:	 torch.Size([1, 4096])
ReLU output shape:	 torch.Size([1, 4096])
Dropout output shape:	 torch.Size([1, 4096])
Linear output shape:	 torch.Size([1, 10])

2.4、读取数据集

ImageNet数据集较大,这里我们Fashion-MNIST数据集。

将AlexNet直接应用于Fashion-MNIST的一个问题是,Fashion-MNIST图像的分辨率(28×28像素)低于ImageNet图像。 为了解决这个问题,我们将它们增加到224×224(通常来讲这不是一个明智的做法,但我们在这里这样做是为了有效使用AlexNet架构)。 我们使用d2l.load_data_fashion_mnist函数中的resize参数执行此调整。

batch_size = 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)

2.5、训练

lr, num_epochs = 0.01, 10
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

总结:

  • AlexNet是更大更深的LeNet,10x参数个数,260x计算复杂度
  • 新引入丢弃法、ReLU、最大池化层和数据增强
  • 2012ImageNet冠军,标志新一轮神经网络热潮的开始

02 使用块的网络-VGG

虽然AlexNet证明深层神经网络卓有成效,但它没有提供一个通用的模板来指导后续的研究人员设计新的网络。

1、VGG块

首先先直观的了解VGG:

在这里插入图片描述

LeNet -> AlexNet -> VGG

在这里插入图片描述

经典卷积神经网络的基本组成部分是下面的这个序列:

  1. 带填充以保持分辨率的卷积层;
  2. 非线性激活函数,如ReLU;
  3. 汇聚层,如最大汇聚层。

而一个VGG块与之类似,由一系列卷积层组成,后面再加上用于空间下采样的最大汇聚层。

在最初的VGG论文中 [Simonyan & Zisserman, 2014],作者使用了带有3×3卷积核、填充为1(保持高度和宽度)的卷积层,和带有2×2汇聚窗口、步幅为2(每个块后的分辨率减半)的最大汇聚层。在下面的代码中,我们定义了一个名为vgg_block的函数来实现一个VGG块。

import torch
from torch import nn
from d2l import torch as d2l


# 定义vgg_block实现一个VGG块:该函数有三个参数,分别对应于卷积层的数量num_convs、输入通道的数量in_channels 和输出通道的数量out_channels.
def vgg_block(num_convs, in_channels, out_channels):
    layers = []
    for _ in range(num_convs):
        layers.append(nn.Conv2d(in_channels, out_channels,
                                kernel_size=3, padding=1))
        layers.append(nn.ReLU())
        in_channels = out_channels
    layers.append(nn.MaxPool2d(kernel_size=2,stride=2))
    return nn.Sequential(*layers)

总结:

  • VGG使用可重复使用的卷积块来构建深度卷积神经网络
  • 不同的卷积块个数和超参数可以得到不同复杂度的变种
  • VGG-11使用可复用的卷积块构造网络。不同的VGG模型可通过每个块中卷积层数量和输出通道数量的差异来定义。
  • 块的使用导致网络定义的非常简洁。使用块可以有效地设计复杂的网络。
  • 在VGG论文中,Simonyan和Ziserman尝试了各种架构。特别是他们发现深层且窄的卷积(即3×3)比较浅层且宽的卷积更有效。

2、VGG网络

在这里插入图片描述

VGG神经网络连接 图7.2.1的几个VGG块(在vgg_block函数中定义)。其中有超参数变量conv_arch。该变量指定了每个VGG块里卷积层个数和输出通道数。全连接模块则与AlexNet中的相同。

原始VGG网络有5个卷积块,其中前两个块各有一个卷积层,后三个块各包含两个卷积层。 第一个模块有64个输出通道,每个后续模块将输出通道数量翻倍,直到该数字达到512。由于该网络使用8个卷积层和3个全连接层,因此它通常被称为VGG-11。

conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))

下面的代码实现了VGG-11。可以通过在conv_arch上执行for循环来简单实现。

def vgg(conv_arch):
    conv_blks = []
    in_channels = 1
    # 卷积层部分
    for (num_convs, out_channels) in conv_arch:
        conv_blks.append(vgg_block(num_convs, in_channels, out_channels))
        in_channels = out_channels

    return nn.Sequential(
        *conv_blks, nn.Flatten(),
        # 全连接层部分
        nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 10))

net = vgg(conv_arch)

构建一个单通道数据样本,以观察每个层输出的形状。

X = torch.randn(size=(1, 1, 224, 224))
for blk in net:
    X = blk(X)
    print(blk.__class__.__name__,'output shape:\t',X.shape)
Sequential output shape:	 torch.Size([1, 64, 112, 112])
Sequential output shape:	 torch.Size([1, 128, 56, 56])
Sequential output shape:	 torch.Size([1, 256, 28, 28])
Sequential output shape:	 torch.Size([1, 512, 14, 14])
Sequential output shape:	 torch.Size([1, 512, 7, 7])
Flatten output shape:	 torch.Size([1, 25088])
Linear output shape:	 torch.Size([1, 4096])
ReLU output shape:	 torch.Size([1, 4096])
Dropout output shape:	 torch.Size([1, 4096])
Linear output shape:	 torch.Size([1, 4096])
ReLU output shape:	 torch.Size([1, 4096])
Dropout output shape:	 torch.Size([1, 4096])
Linear output shape:	 torch.Size([1, 10])

我们在每个块的高度和宽度减半,最终高度和宽度都为7。最后再展平表示,送入全连接层处理。

3、训练模型

由于VGG-11比AlexNet计算量更大,因此我们构建了一个通道数较少的网络

ratio = 4
small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]
net = vgg(small_conv_arch)

除了使用略高的学习率外,模型训练过程与 7.1节中的AlexNet类似。

lr, num_epochs, batch_size = 0.05, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

4、代码汇总

import torch
from torch import nn
from d2l import torch as d2l


# 实现一个VGG块
def vgg_block(num_convs, in_channels, out_channels):  # 卷积层的数量num_convs、输入通道的数量in_channels、输出通道的数量out_channels.
    layers = []
    for _ in range(num_convs):
        layers.append(nn.Conv2d(in_channels, out_channels,
                                kernel_size=3, padding=1))
        layers.append(nn.ReLU())
        in_channels = out_channels
    layers.append(nn.MaxPool2d(kernel_size=2,stride=2))
    return nn.Sequential(*layers)


# 对应原始VGG网络有5个卷积块
conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512)) # (卷积层的数量,输出通道的数量)
# 输入通道数去哪了?第一层中我们给个初始的输入通道数,之后几层的输入通道数都等于上一层的输出通道数


# 代码实现VGG-11
def vgg(conv_arch):
    conv_blks = []
    in_channels = 1
    # 卷积层部分
    for (num_convs, out_channels) in conv_arch:
        conv_blks.append(vgg_block(num_convs, in_channels, out_channels))
        in_channels = out_channels

    return nn.Sequential(
        *conv_blks, nn.Flatten(),
        # 全连接层部分
        nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 10))

net = vgg(conv_arch)

# # 构建一个数据样本,以观察每个层输出的形状。
# X = torch.randn(size=(1, 1, 224, 224))
# for blk in net:
#     X = blk(X)
#     print(blk.__class__.__name__,'output shape:\t',X.shape)
    

# 由于VGG-11比AlexNet计算量更大,因此我们构建了一个通道数较少的网络,不用之前定义的net:net = vgg(conv_arch)
ratio = 4
small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]
net = vgg(small_conv_arch)

lr, num_epochs, batch_size = 0.05, 10, 128

# 数据准备
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)

# 开始训练
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

5、小结

  • VGG-11使用可复用的卷积块构造网络。不同的VGG模型可通过每个块中卷积层数量和输出通道数量的差异来定义。
  • 块的使用导致网络定义的非常简洁。使用块可以有效地设计复杂的网络。
  • 在VGG论文中,Simonyan和Ziserman尝试了各种架构。特别是他们发现深层且窄的卷积(即3×3)比较浅层且宽的卷积更有效。

03 网络中的网络-NiN

  • LeNet、AlexNet和VGG都有一个共同的设计模式:通过一系列的卷积层与汇聚层来提取空间结构特征,然后通过全连接层对特征的表征进行处理。
  • AlexNet和VGG对LeNet的改进主要在于如何扩大和加深这两个模块。
  • 或者,可以想象在这个过程的早期使用全连接层。然而,如果使用了全连接层,可能会完全放弃表征的空间结构。 网络中的网络NiN)提供了一个非常简单的解决方案:在每个像素的通道上分别使用多层感知机

1、NiN块

1.1、概述

AlexNet和VGG对LeNet最后都采用了全连接层,会导致全连接层参数太大了,很容易出现过拟合扽等问题。

在这里插入图片描述

为了解决这一问题,我们引入NiN。NiN的核心在于NiN块

在这里插入图片描述

了解完NiN的核心思想,我们看一下NiN架构:

在这里插入图片描述

总结:

  • NiN块使用卷积层加两个1*1卷积层
    • 后者对每个像素增加了非线性性
  • NiN使用全局平均池化层来替代VGG和AlexNet中的全连接层
    • 不容易过拟合,更少的参数个数

1.2、实现

在这里插入图片描述

import torch
from torch import nn
from d2l import torch as d2l


def nin_block(in_channels, out_channels, kernel_size, strides, padding):
    return nn.Sequential(
        nn.Conv2d(in_channels, out_channels, kernel_size, strides, padding),
        nn.ReLU(),
        nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU(),
        nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU())

2、NiN模型

NiN使用窗口形状为11×11、5×5和3×3的卷积层,输出通道数量与AlexNet中的相同。 每个NiN块后有一个最大汇聚层,汇聚窗口形状为3×3,步幅为2。

NiN和AlexNet之间的一个显著区别是NiN完全取消了全连接层。 相反,NiN使用一个NiN块,其输出通道数等于标签类别的数量。最后放一个全局平均汇聚层(global average pooling layer),生成一个对数几率 (logits)。

NiN设计的一个优点是,它显著减少了模型所需参数的数量。然而,在实践中,这种设计有时会增加训练模型的时间。

net = nn.Sequential(
    nin_block(1, 96, kernel_size=11, strides=4, padding=0),
    nn.MaxPool2d(3, stride=2),
    nin_block(96, 256, kernel_size=5, strides=1, padding=2),
    nn.MaxPool2d(3, stride=2),
    nin_block(256, 384, kernel_size=3, strides=1, padding=1),
    nn.MaxPool2d(3, stride=2),
    nn.Dropout(0.5),
    # 标签类别数是10
    nin_block(384, 10, kernel_size=3, strides=1, padding=1),
    # 全局的平均池化层
    nn.AdaptiveAvgPool2d((1, 1)),
    # 将四维的输出转成二维的输出,其形状为(批量大小,10)
    nn.Flatten())

我们创建一个数据样本来查看每个块的输出形状。

X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape:\t', X.shape)
Sequential output shape:     torch.Size([1, 96, 54, 54])
MaxPool2d output shape:      torch.Size([1, 96, 26, 26])
Sequential output shape:     torch.Size([1, 256, 26, 26])
MaxPool2d output shape:      torch.Size([1, 256, 12, 12])
Sequential output shape:     torch.Size([1, 384, 12, 12])
MaxPool2d output shape:      torch.Size([1, 384, 5, 5])
Dropout output shape:        torch.Size([1, 384, 5, 5])
Sequential output shape:     torch.Size([1, 10, 5, 5])
AdaptiveAvgPool2d output shape:      torch.Size([1, 10, 1, 1])
Flatten output shape:        torch.Size([1, 10])

3、训练模型

lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

4、小结

  • NiN使用由一个卷积层和多个1×1卷积层组成的块。该块可以在卷积神经网络中使用,以允许更多的每像素非线性。
  • NiN去除了容易造成过拟合的全连接层,将它们替换为全局平均汇聚层(即在所有位置上进行求和)。该汇聚层通道数量为所需的输出数量(例如,Fashion-MNIST的输出为10)。
  • 移除全连接层可减少过拟合,同时显著减少NiN的参数。
  • NiN的设计影响了许多后续卷积神经网络的设计。

04 含并行连结的网络-GoogLeNet

GoogLeNet吸收了NiN中串联网络的思想,并在此基础上做了改进。 这篇论文的一个重点是解决了什么样大小的卷积核最合适的问题。

1、Inception块

如何找到最好的卷积层超参数?

在这里插入图片描述

1 * 1的卷积、3 * 3的卷积等等,怎么样的才是最好的?

在GoogLeNet中,基本的卷积块被称为Inception块(Inception block)。Inception块的架构如下:
在这里插入图片描述

上图中可以看到Inception块由四条并行路径组成,输入被复制了四份传到不同的路径。

  • 前三条路径使用窗口大小为1×1、3×3和5×5的卷积层,从不同空间大小中提取信息
  • 中间的两条路径在输入上执行1×1卷积,以减少通道数,从而降低模型的复杂性
  • 第四条路径使用3×3最大汇聚层,然后使用1×1卷积层来改变通道数

这四条路径都使用合适的填充来使输入与输出的高和宽一致,最后我们将每条线路的输出在通道维度上连结,并构成Inception块的输出。在Inception块中,通常调整的超参数是每层输出通道数。

下面看一下通道数的变化:

在这里插入图片描述

关于参数个数与计算复杂度:

在这里插入图片描述

2、GoogLeNet模型

GoogLeNet一共使用9个Inception块和全局平均汇聚层的堆叠来生成其估计值。Inception块之间的最大汇聚层可降低维度。 第一个模块类似于AlexNet和LeNet,Inception块的组合从VGG继承,全局平均汇聚层避免了在最后使用全连接层。其架构如下:

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

前面我们用的inception v1 ,后续发展中出现了许多变种:

在这里插入图片描述

3、代码实现

下面,我们逐一实现GoogLeNet的每个模块。

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l


# 搭建Inception块
class Inception(nn.Module):
    # c1--c4是每条路径的输出通道数
    def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):
        super(Inception, self).__init__(**kwargs)
        # 线路1,单1x1卷积层
        self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)
        # 线路2,1x1卷积层后接3x3卷积层
        self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)
        self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
        # 线路3,1x1卷积层后接5x5卷积层
        self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)
        self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
        # 线路4,3x3最大汇聚层后接1x1卷积层
        self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
        self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1)

    def forward(self, x):
        p1 = F.relu(self.p1_1(x))
        p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
        p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
        p4 = F.relu(self.p4_2(self.p4_1(x)))
        # 在通道维度上连结输出
        return torch.cat((p1, p2, p3, p4), dim=1)
    
    
# 我们逐一实现GoogLeNet的每个模块。
# 第一个模块使用64个通道、7*7卷积层。
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))


# 第二个模块使用两个卷积层:第一个卷积层是64个通道、1*1卷积层;第二个卷积层使用将通道数量增加三倍的3*3卷积层。 这对应于Inception块中的第二条路径。
b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),
                   nn.ReLU(),
                   nn.Conv2d(64, 192, kernel_size=3, padding=1),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

# 第三个模块串联两个完整的Inception块。
b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
                   Inception(256, 128, (128, 192), (32, 96), 64),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

# 第四模块更加复杂, 它串联了5个Inception块
b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
                   Inception(512, 160, (112, 224), (24, 64), 64),
                   Inception(512, 128, (128, 256), (24, 64), 64),
                   Inception(512, 112, (144, 288), (32, 64), 64),
                   Inception(528, 256, (160, 320), (32, 128), 128),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

# 第五模块包含两个Inception块
b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
                   Inception(832, 384, (192, 384), (48, 128), 128),
                   nn.AdaptiveAvgPool2d((1,1)),
                   nn.Flatten())

net = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10))

下面演示各个模块输出的形状变化。

X = torch.rand(size=(1, 1, 96, 96))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape:\t', X.shape)

结果演示:

Sequential output shape:	 torch.Size([1, 64, 24, 24])
Sequential output shape:	 torch.Size([1, 192, 12, 12])
Sequential output shape:	 torch.Size([1, 480, 6, 6])
Sequential output shape:	 torch.Size([1, 832, 3, 3])
Sequential output shape:	 torch.Size([1, 1024])
Linear output shape:	 torch.Size([1, 10])

开始训练:

lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

4、总结

在这里插入图片描述

  • Inception块相当于一个有4条路径的子网络。它通过不同窗口形状的卷积层和最大汇聚层来并行抽取信息,并使用1×1卷积层减少每像素级别上的通道维数从而降低模型复杂度。
  • GoogLeNet将多个设计精细的Inception块与其他层(卷积层、全连接层)串联起来。其中Inception块的通道数分配之比是在ImageNet数据集上通过大量的实验得来的。
  • GoogLeNet和它的后继者们一度是ImageNet上最有效的模型之一:它以较低的计算复杂度提供了类似的测试精度。

05 批量归一化

训练深层神经网络是十分困难的,深层网络的收敛速度较慢。 在本节中,我们将介绍批量规范化(batch normalization)

1、训练深层网络

为什么出现批量归一化?
在这里插入图片描述

什么室批量归一化?
在这里插入图片描述

2、批量规范化层

批量规范化和其他层之间的一个关键区别是,由于批量规范化在完整的小批量上运行,因此我们不能像以前在引入其他层时那样忽略批量大小。 我们在下面讨论这两种情况:全连接层和卷积层,他们的批量规范化实现略有不同。
在这里插入图片描述
在这里插入图片描述

批量归一化在做什么?
在这里插入图片描述

总结:

  • 批量归一化固定小批量中的均值和方差,然后学习出合适的偏移和缩放
  • 可以加速收敛速度,但一般不改变模型精度

3、代码实现

实现一个具有张量的批量规范化层。

import torch
from torch import nn
from d2l import torch as d2l


def batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):
    # 通过is_grad_enabled来判断当前模式是训练模式还是预测模式
    if not torch.is_grad_enabled():
        # 如果是在预测模式下,直接使用传入的移动平均所得的均值和方差
        X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)
    else:
        assert len(X.shape) in (2, 4)
        if len(X.shape) == 2:
            # 使用全连接层的情况,计算特征维上的均值和方差
            mean = X.mean(dim=0)
            var = ((X - mean) ** 2).mean(dim=0)
        else:
            # 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差。
            # 这里我们需要保持X的形状以便后面可以做广播运算
            mean = X.mean(dim=(0, 2, 3), keepdim=True)
            var = ((X - mean) ** 2).mean(dim=(0, 2, 3), keepdim=True)
        # 训练模式下,用当前的均值和方差做标准化
        X_hat = (X - mean) / torch.sqrt(var + eps)
        # 更新移动平均的均值和方差
        moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
        moving_var = momentum * moving_var + (1.0 - momentum) * var
    Y = gamma * X_hat + beta  # 缩放和移位
    return Y, moving_mean.data, moving_var.data

我们现在可以创建一个正确的BatchNorm层。 这个层将保持适当的参数:拉伸gamma和偏移beta,这两个参数将在训练过程中更新。 此外,我们的层将保存均值和方差的移动平均值,以便在模型预测期间随后使用。

class BatchNorm(nn.Module):
    # num_features:完全连接层的输出数量或卷积层的输出通道数。
    # num_dims:2表示完全连接层,4表示卷积层
    def __init__(self, num_features, num_dims):
        super().__init__()
        if num_dims == 2:
            shape = (1, num_features)
        else:
            shape = (1, num_features, 1, 1)
        # 参与求梯度和迭代的拉伸和偏移参数,分别初始化成1和0
        self.gamma = nn.Parameter(torch.ones(shape))
        self.beta = nn.Parameter(torch.zeros(shape))
        # 非模型参数的变量初始化为0和1
        self.moving_mean = torch.zeros(shape)
        self.moving_var = torch.ones(shape)

    def forward(self, X):
        # 如果X不在内存上,将moving_mean和moving_var
        # 复制到X所在显存上
        if self.moving_mean.device != X.device:
            self.moving_mean = self.moving_mean.to(X.device)
            self.moving_var = self.moving_var.to(X.device)
        # 保存更新过的moving_mean和moving_var
        Y, self.moving_mean, self.moving_var = batch_norm(
            X, self.gamma, self.beta, self.moving_mean,
            self.moving_var, eps=1e-5, momentum=0.9)
        return Y

为了更好理解如何应用BatchNorm,下面我们将其应用于LeNet模型

net = nn.Sequential(
    nn.Conv2d(1, 6, kernel_size=5), BatchNorm(6, num_dims=4), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), BatchNorm(16, num_dims=4), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),
    nn.Linear(16*4*4, 120), BatchNorm(120, num_dims=2), nn.Sigmoid(),
    nn.Linear(120, 84), BatchNorm(84, num_dims=2), nn.Sigmoid(),
    nn.Linear(84, 10))

训练

lr, num_epochs, batch_size = 1.0, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

让我们来看看从第一个批量规范化层中学到的拉伸参数gamma和偏移参数beta

net[1].gamma.reshape((-1,)), net[1].beta.reshape((-1,))

结果展示:

(tensor([0.3362, 4.0349, 0.4496, 3.7056, 3.7774, 2.6762], device='cuda:0',
        grad_fn=<ReshapeAliasBackward0>),
 tensor([-0.5739,  4.1376,  0.5126,  0.3060, -2.5187,  0.3683], device='cuda:0',
        grad_fn=<ReshapeAliasBackward0>))

简洁实现:除了使用我们刚刚定义的BatchNorm,我们也可以直接使用深度学习框架中定义的BatchNorm

net = nn.Sequential(
    nn.Conv2d(1, 6, kernel_size=5), nn.BatchNorm2d(6), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), nn.BatchNorm2d(16), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),
    nn.Linear(256, 120), nn.BatchNorm1d(120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.BatchNorm1d(84), nn.Sigmoid(),
    nn.Linear(84, 10))
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

4、争议

在这里插入图片描述

5、小结

  • 在模型训练过程中,批量规范化利用小批量的均值和标准差,不断调整神经网络的中间输出,使整个神经网络各层的中间输出值更加稳定。
  • 批量规范化在全连接层和卷积层的使用略有不同。
  • 批量规范化层和暂退层一样,在训练模式和预测模式下计算不同。
  • 批量规范化有许多有益的副作用,主要是正则化。另一方面,”减少内部协变量偏移“的原始动机似乎不是一个有效的解释。

06 残差网络-ResNet

ResNet源自一种思想:加深神经网络

背景:何恺明等人提出了残差网络(ResNet) [He et al., 2016a]。 它在2015年的ImageNet图像识别挑战赛夺魁,并深刻影响了后来的深度神经网络的设计。 残差网络的核心思想是:每个附加层都应该更容易地包含原始函数作为其元素之一。

1、核心思想

1.1、函数类

在这里插入图片描述

补充:

  • 恒等映射:对任意集合A,如果映射f:A→A定义为f(a)=a,即规定A中每个元素a与自身对应,则称f为A上的恒等映射(identical [identity] mapping)。
    在这里插入图片描述

具体做法如下。

1.2、残差块

在这里插入图片描述

概念听的有点模糊,可以结合着代码理解:

ResNet沿用了VGG完整的3×3卷积层设计。 残差块里首先有2个有相同输出通道数的3×3卷积层。 每个卷积层后接一个批量规范化层和ReLU激活函数。 然后我们通过跨层数据通路,跳过这2个卷积运算,将输入直接加在最后的ReLU激活函数前。 这样的设计要求2个卷积层的输出与输入形状一样,从而使它们可以相加。 如果想改变通道数,就需要引入一个额外的1×1卷积层来将输入变换成需要的形状后再做相加运算。

残差块的实现:

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l


class Residual(nn.Module):  #@save
    def __init__(self, input_channels, num_channels,
                 use_1x1conv=False, strides=1):
        super().__init__()
        self.conv1 = nn.Conv2d(input_channels, num_channels,
                               kernel_size=3, padding=1, stride=strides)
        self.conv2 = nn.Conv2d(num_channels, num_channels,
                               kernel_size=3, padding=1)
        if use_1x1conv:
            self.conv3 = nn.Conv2d(input_channels, num_channels,
                                   kernel_size=1, stride=strides)
        else:
            self.conv3 = None
        self.bn1 = nn.BatchNorm2d(num_channels)
        self.bn2 = nn.BatchNorm2d(num_channels)

    def forward(self, X):
        Y = F.relu(self.bn1(self.conv1(X)))
        Y = self.bn2(self.conv2(Y))
        if self.conv3:
            X = self.conv3(X)
        Y += X
        return F.relu(Y)

此代码生成两种类型的网络: 一种是当use_1x1conv=False时,应用ReLU非线性函数之前,将输入添加到输出。 另一种是当use_1x1conv=True时,添加通过1×1卷积调整通道和分辨率。

下面我们来查看输入和输出形状一致的情况。

blk = Residual(3,3)
X = torch.rand(4, 3, 6, 6)
Y = blk(X)
Y.shape
torch.Size([4, 3, 6, 6])

我们也可以在增加输出通道数的同时,减半输出的高和宽。

blk = Residual(3,6, use_1x1conv=True, strides=2)
blk(X).shape
torch.Size([4, 6, 3, 3])

在这里插入图片描述

可以使用不同的残差块:
在这里插入图片描述

2、ResNet模型

在这里插入图片描述

不同的ResNet块数量和数据通道数,可以得到不同的ResNet架构

ResNet的前两层跟之前介绍的GoogLeNet中的一样: 在输出通道数为64、步幅为2的7×7卷积层后,接步幅为2的3×3的最大汇聚层。 不同之处在于ResNet每个卷积层后增加了批量规范化层。

b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                   nn.BatchNorm2d(64), nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

GoogLeNet在后面接了4个由Inception块组成的模块。 ResNet则使用4个由残差块组成的模块,每个模块使用若干个同样输出通道数的残差块。 第一个模块的通道数同输入通道数一致。 由于之前已经使用了步幅为2的最大汇聚层,所以无须减小高和宽。 之后的每个模块在第一个残差块里将上一个模块的通道数翻倍,并将高和宽减半。

下面我们来实现这个模块。注意,我们对第一个模块做了特别处理。

def resnet_block(input_channels, num_channels, num_residuals,
                 first_block=False):
    blk = []
    for i in range(num_residuals):
        if i == 0 and not first_block:
            blk.append(Residual(input_channels, num_channels,
                                use_1x1conv=True, strides=2))
        else:
            blk.append(Residual(num_channels, num_channels))
    return blk

接着在ResNet加入所有残差块,这里每个模块使用2个残差块。

b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))

最后,与GoogLeNet一样,在ResNet中加入全局平均汇聚层,以及全连接层输出。

net = nn.Sequential(b1, b2, b3, b4, b5,
                    nn.AdaptiveAvgPool2d((1,1)),
                    nn.Flatten(), nn.Linear(512, 10))

每个模块有4个卷积层(不包括恒等映射的1×1卷积层)。 加上第一个7×7卷积层和最后一个全连接层,共有18层。 因此,这种模型通常被称为ResNet-18。 通过配置不同的通道数和模块里的残差块数可以得到不同的ResNet模型,例如更深的含152层的ResNet-152。 虽然ResNet的主体架构跟GoogLeNet类似,但ResNet架构更简单,修改也更方便。这些因素都导致了ResNet迅速被广泛使用。下图描述了完整的ResNet-18。
在这里插入图片描述

在训练ResNet之前,让我们观察一下ResNet中不同模块的输入形状是如何变化的。 在之前所有架构中,分辨率降低,通道数量增加,直到全局平均汇聚层聚集所有特征。

X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape:\t', X.shape)
Sequential output shape:     torch.Size([1, 64, 56, 56])
Sequential output shape:     torch.Size([1, 64, 56, 56])
Sequential output shape:     torch.Size([1, 128, 28, 28])
Sequential output shape:     torch.Size([1, 256, 14, 14])
Sequential output shape:     torch.Size([1, 512, 7, 7])
AdaptiveAvgPool2d output shape:      torch.Size([1, 512, 1, 1])
Flatten output shape:        torch.Size([1, 512])
Linear output shape:         torch.Size([1, 10])

开始训练:

lr, num_epochs, batch_size = 0.05, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

2.1 整合代码

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l


class Residual(nn.Module):  #@save
    def __init__(self, input_channels, num_channels,
                 use_1x1conv=False, strides=1):
        super().__init__()
        self.conv1 = nn.Conv2d(input_channels, num_channels,
                               kernel_size=3, padding=1, stride=strides)
        self.conv2 = nn.Conv2d(num_channels, num_channels,
                               kernel_size=3, padding=1)
        if use_1x1conv:
            self.conv3 = nn.Conv2d(input_channels, num_channels,
                                   kernel_size=1, stride=strides)
        else:
            self.conv3 = None
        self.bn1 = nn.BatchNorm2d(num_channels)
        self.bn2 = nn.BatchNorm2d(num_channels)

    def forward(self, X):
        Y = F.relu(self.bn1(self.conv1(X)))
        Y = self.bn2(self.conv2(Y))
        if self.conv3:
            X = self.conv3(X)
        Y += X
        return F.relu(Y)
    
# ResNet的前两层跟之前介绍的GoogLeNet中的一样: 在输出通道数为64、步幅为2的卷积层后,接步幅为2的的最大汇聚层。 不同之处在于ResNet每个卷积层后增加了批量规范化层。
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                   nn.BatchNorm2d(64), nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

# GoogLeNet在后面接了4个由Inception块组成的模块。 ResNet则使用4个由残差块组成的模块,每个模块使用若干个同样输出通道数的残差块。 第一个模块的通道数同输入通道数一致。 由于之前已经使用了步幅为2的最大汇聚层,所以无须减小高和宽。 之后的每个模块在第一个残差块里将上一个模块的通道数翻倍,并将高和宽减半。
#下面我们来实现这个模块。注意,我们对第一个模块做了特别处理。
def resnet_block(input_channels, num_channels, num_residuals,
                 first_block=False):
    blk = []
    for i in range(num_residuals):
        if i == 0 and not first_block:
            blk.append(Residual(input_channels, num_channels,
                                use_1x1conv=True, strides=2))
        else:
            blk.append(Residual(num_channels, num_channels))
    return blk


# 接着在ResNet加入所有残差块,这里每个模块使用2个残差块。
b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))


# 最后,与GoogLeNet一样,在ResNet中加入全局平均汇聚层,以及全连接层输出。
net = nn.Sequential(b1, b2, b3, b4, b5,
                    nn.AdaptiveAvgPool2d((1,1)),
                    nn.Flatten(), nn.Linear(512, 10))
lr, num_epochs, batch_size = 0.05, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

3、总结

  • 残差块使得很深的网络更加容易训练
    • 甚至可以训练一千层的网络
  • 残差网络对随后的深层神经网络设计产生了深远影响,无论是卷积类网络还是全连接类网络
  • 学习嵌套函数(nested function)是训练神经网络的理想情况。在深层神经网络中,学习另一层作为恒等映射(identity function)较容易(尽管这是一个极端情况)。
  • 残差映射可以更容易地学习同一函数,例如将权重层中的参数近似为零。
  • 利用残差块(residual blocks)可以训练出一个有效的深层神经网络:输入可以通过层间的残余连接更快地向前传播。
  • 残差网络(ResNet)对随后的深层神经网络设计产生了深远影响。

4、ResNet为什么能训练出1000层的模型

07 稠密连接网络-DenseNet

08 竞赛:图像分类

视频:30 第二部分完结竞赛:图片分类【动手学深度学习v2】_哔哩哔哩_bilibili

竞赛地址:https://www.kaggle.com/c/classify-leaves

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-10-08 20:42:06  更:2022-10-08 20:45:45 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/25 20:41:20-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码