IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 关于集成学习算法的概述(Bagging、Boosting、Stacking、Blending) -> 正文阅读

[人工智能]关于集成学习算法的概述(Bagging、Boosting、Stacking、Blending)

近几年,集成学习(Ensemble Learning)在国内外研究以及数据科学竞赛中被广泛提及和应用,它是通过某种结合策略将多个单一模型结合起来得到一个强模型,这个强模型通常比单一模型有更强的性能。目前,集成学习模型的分类主要是根据个体学习器之间的关系进行区分,常用集成学习框架包括:Bagging、Boosting以及Stacking。

在这里插入图片描述

(1)Bagging算法

(1)Bagging算法也称为袋装法,其基本思想是将多个弱学习器通过并行的方式进行训练,然后再将所有训练好弱学习器通过集成策略组合为一个强学习器。这种方式可以实现以高偏差换取低方差,从而减小模型的整体误差。Bagging算法流程图如下:
在这里插入图片描述
以随机森林为例

随机森林(Random Forests)是以决策树作为基分类器的一种Bagging集成学习方法,其基本思想是将多棵决策树独立并行训练后利用集成策略(投票或平均)来输出最终结果,其中每棵决策树均是在原始训练集中随机选择样本、随机选择特征构建而成。具体步骤如下:
在这里插入图片描述
单个树建立流程
在这里插入图片描述

随机森林具有许多优点,例如随机森林可以不进行交叉验证操作,即由于随机森林是通过自助式的随机抽取样本来构建决策树,所以每个决策树的生成都会有一部分的样本未参与,把这部分样本视作第i棵决策树的袋外样本(OOB),并使用第i棵训练好的决策树模型进行预测,最后得到随机森林的袋外错误率(误分样本数占样本总数的比例),以此来评价随机森林的效果,从而达到交叉验证的效果。但是随机森林也存在一定的不足,如在小样本数据时,往往表现不佳;在处理回归问题时效果不如分类;当数据的噪音太大,模型结果易出现过拟合。

不过总体来说,随机森林是一个非常优秀的数据挖掘算法,在实际落地中应用广泛。

(2)Boosting算法

(2)Boosting算法也称为提升法,其主要思想是将多个弱学习器通过串行的方式进行训练,然后将所有弱学习器集成为一个强学习器。在Boosting算法中每个弱学习器之间并不独立,即第一个弱学习器在学习的时候对每个样本出现的权重均视为等同,而当下一个弱学习器学习时会计算上一个弱学习器的训练误差,重新更新每个样本的权重(把被错分的样本权重调高,增加样本的出现几率)。具体的,Boosting算法流程图如下:

在这里插入图片描述

例如LIghtGBM算法
在这里插入图片描述

(3)Stacking算法和Blending算法

可转到:
关于融合模型的一些简单整理(Stacking、Blending)

参考文献:
基于E-LightGBM算法的5G套餐潜在客户识别研究[D],2022

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-10-17 12:33:42  更:2022-10-17 12:34:52 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/29 7:20:43-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码