| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> dnn神经网络和bp神经网络区别概率神经网络(PNN) -> 正文阅读 |
|
[人工智能]dnn神经网络和bp神经网络区别概率神经网络(PNN) |
神经网络优缺点,优点:(1)具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。 预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。(2)具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。(3)具有高速寻找优化解的能力。 寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。 缺点:(1)最严重的问题是没能力来解释自己的推理过程和推理依据。(2)不能向用户提出必要的询问,而且当数据不充分的时候,神经网络就无法进行工作。 (3)把一切问题的特征都变为数字,把一切推理都变为数值计算,其结果势必是丢失信息。(4)理论和学习算法还有待于进一步完善和提高。 扩展资料:神经网络发展趋势人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。 人工神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。 近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。 将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。神经计算机的研究发展很快,已有产品进入市场。光电结合的神经计算机为人工神经网络的发展提供了良好条件。 神经网络在很多领域已得到了很好的应用,但其需要研究的方面还很多。 其中,具有分布存储、并行处理、自学习、自组织以及非线性映射等优点的神经网络与其他技术的结合以及由此而来的混合方法和混合系统,已经成为一大研究热点。 由于其他方法也有它们各自的优点,所以将神经网络与其他方法相结合,取长补短,继而可以获得更好的应用效果。 目前这方面工作有神经网络与模糊逻辑、专家系统、遗传算法、小波分析、混沌、粗集理论、分形理论、证据理论和灰色系统等的融合。参考资料:百度百科-人工神经网络。 谷歌人工智能写作项目:神经网络伪原创 神经网络的泛化能力差吗?泛化能力,英文全称generalization ability,指机器学习算法对新鲜样本的适应能力,一种预测新的input类别的能力好文案。 通过学习找到隐含在数据背后的规律,并对具有同一规律的学习集以外的数据,这种经过训练的网络可以给出合适的输出,该能力就被称为泛化能力。 对于神经网络而言,一般越复杂说明该神经网络承受的复杂度越高,描述规律的复杂度容量就越大,当然越好,当然也不是绝对的,但是这能说明一个容器容量的问题,这时该神经网络的泛化能力也越强。 我们需要知道结构复杂性和样本复杂性、样本质量、初始权值、学习时间等因素,都会影响神经网络的泛化能力。 为了保证神经网络具有较强的泛化能力,人们已做了很多研究,得到了诸多泛化方法,常用的包括剪枝算法、构造算法和进化算法等。人工神经网络的泛化能力主要是由于透过无监督预学习可以从训练集导出高效的特征集。 复杂的问题一旦转换成用这些特征表达的形式后就自然变简单了。观念上这个有点像是在做适用于训练集的一种智能化的坐标转换。 举例来说,如果训练集是许多人脸的图片,那么预训练做得好的话就能导出如鼻子,眼睛,嘴巴,各种基本脸型等特征。如果做分类时是用这些特征去做而不是基于像素的话,结果自然会好得多。 虽然大型的神经网络具有极多的参数,可是由于做分类时其实是基于少数的特征,因此也比较不会产生过拟合的情形。 同时,针对神经网络易于陷入局部极值、结构难以确定和泛化能力较差的缺点,引入了能很好解决小样本、非线性和高维数问题的支持向量回归机来进行油气田开发指标的预测。 神经网络算法的局限性神经网络算法的局限性是:可以使用均值函数但是这个函数将获取嵌入的平均值,并将其分配为新的嵌入。但是,很容易看出,对于某些不同的图,它们会给出相同的嵌入,所以,均值函数并不是单射的。 即使图不同,节点 v 和 v’ 的平均嵌入聚合(此处嵌入对应于不同的颜色)将给出相同的嵌入。 这里真正重要的是,你可以先用某个函数 f(x) 将每个嵌入映射到一个新的嵌入,然后进行求和,得到一个单射函数。 在证明中,它们实际上显式地声明了这个函数 f,这需要两个额外条件,即 X 是可数的,且任何多重集都是有界的。 并且事实上,在训练中并没有任何东西可以保证这种单射性,而且可能还会有一些图是 GIN 无法区分的,但WL可以。所以这是对 GIN 的一个很强的假设,如果违反了这一假设,那么 GIN 的性能将受到限制。 神经网络算法的普适性是:研究模型的局限性通常更容易获得对模型的洞察。毕竟,网络所不能学到的关于特定特征的知识在应用时独立于训练过程。 此外,通过帮助我们理解与模型相关的任务的难度,不可能性结果(impossibility result)有助于得出关于如何选择模型超参数的实用建议。以图分类问题为例。 训练一个图分类器需要识别是什么构成了一个类,即在同一个类而非其他类中找到图共享的属性,然后决定新的图是否遵守所学习到的属性。 然而,如果可以通过一定深度的图神经网络(且测试集足够多样化)证明上述决策问题是不可能的,那么我们可以确定,同一个网络将不会学习如何正确地对测试集进行分类,这与使用了什么学习算法无关。 因此,在进行实验时,我们应该把重点放在比下限更深的网络上。 PNN神经网络,BP神经网络,Elman神经网络,ANN神经网络,几种神经网络中哪个容错能力最强?简单介绍人工神经网络和模糊神经网络其实百科介绍的很详细,如“人工神经网络是模拟人脑结构的思维功能,具有较强的自学习和联想功能,人工干预少,精度较高,对专家知识的利用也较少。 但缺点是它不能处理和描述模糊信息,不能很好利用已有的经验知识,特别是学习及问题的求解具有黑箱特性,其工作不具有可解释性,同时它对样本的要求较高;模糊系统相对于神经网络而言,具有推理过程容易理解、专家知识利用较好、对样本的要求较低等优点,但它同时又存在人工干预多、推理速度慢、精度较低等缺点,很难实现自适应学习的功能,而且如何自动生成和调整隶属度函数和模糊规则,也是一个棘手的问题。 ”即保证人工神经网络自身的学习能力下,采用模糊理论解决模糊信号,使神经网络权系数为模糊权,或者输入为模糊量。 比如原本神经网络处理的是连续数据(double)不适合求解模糊数据,此时就需要引入模糊理论,来构造适合于求解这类模糊数据的神经网络。 深度学习有哪些优点和缺点深度学习的主要优点如下:1:学习能力强深度学习具备很强的学习能力。2:覆盖范围广,适应性好深度学习的神经网络层数很多,宽度很广,理论上可以映射到任意函数,所以能解决很复杂的问题。 3:数据驱动,上限高深度学习高度依赖数据,数据量越大,它的表现就越好。在图像识别、面部识别、NLP 等领域表现尤为突出。 4:出色的可移植性由于深度学习的优异表现,很多框架都可以使用,而且这些框架可以兼容很多平台。深度学习的缺点:只能提供有限数据量的应用场景下,深度学习算法不能够对数据的规律进行无偏差的估计。 为了达到很好的精度,需要大数据支撑。由于深度学习中图模型的复杂化导致算法的时间复杂度急剧提升,为了保证算法的实时性,需要更高的并行编程技巧和更多更好的硬件支持。 因此,只有一些经济实力比较强大的科研机构或企业,才能够用深度学习来做一些前沿而实用的应用。 BP神经网络的核心问题是什么?其优缺点有哪些?人工神经网络,是一种旨在模仿人脑结构及其功能的信息处理系统,就是使用人工神经网络方法实现模式识别.可处理一些环境信息十分复杂,背景知识不清楚,推理规则不明确的问题,神经网络方法允许样品有较大的缺损和畸变.神经网络的类型很多,建立神经网络模型时,根据研究对象的特点,可以考虑不同的神经网络模型. 前馈型BP网络,即误差逆传播神经网络是最常用,最流行的神经网络.BP网络的输入和输出关系可以看成是一种映射关系,即每一组输入对应一组输出.BP算法是最著名的多层前向网络训练算法,尽管存在收敛速度慢,局部极值等缺点,但可通过各种改进措施来提高它的收敛速度,克服局部极值现象,而且具有简单,易行,计算量小,并行性强等特点,目前仍是多层前向网络的首选算法.多层前向BP网络的优点:网络实质上实现了一个从输入到输出的映射功能,而数学理论已证明它具有实现任何复杂非线性映射的功能。 这使得它特别适合于求解内部机制复杂的问题;网络能通过学习带正确答案的实例集自动提取“合理的”求解规则,即具有自学习能力;网络具有一定的推广、概括能力。 多层前向BP网络的问题:从数学角度看,BP算法为一种局部搜索的优化方法,但它要解决的问题为求解复杂非线性函数的全局极值,因此,算法很有可能陷入局部极值,使训练失败;网络的逼近、推广能力同学习样本的典型性密切相关,而从问题中选取典型样本实例组成训练集是一个很困难的问题。 难以解决应用问题的实例规模和网络规模间的矛盾。这涉及到网络容量的可能性与可行性的关系问题,即学习复杂性问题;网络结构的选择尚无一种统一而完整的理论指导,一般只能由经验选定。 为此,有人称神经网络的结构选择为一种艺术。而网络的结构直接影响网络的逼近能力及推广性质。 因此,应用中如何选择合适的网络结构是一个重要的问题;新加入的样本要影响已学习成功的网络,而且刻画每个输入样本的特征的数目也必须相同;网络的预测能力(也称泛化能力、推广能力)与训练能力(也称逼近能力、学习能力)的矛盾。 一般情况下,训练能力差时,预测能力也差,并且一定程度上,随训练能力地提高,预测能力也提高。但这种趋势有一个极限,当达到此极限时,随训练能力的提高,预测能力反而下降,即出现所谓“过拟合”现象。 此时,网络学习了过多的样本细节,而不能反映样本内含的规律由于BP算法本质上为梯度下降法,而它所要优化的目标函数又非常复杂,因此,必然会出现“锯齿形现象”,这使得BP算法低效;存在麻痹现象,由于优化的目标函数很复杂,它必然会在神经元输出接近0或1的情况下,出现一些平坦区,在这些区域内,权值误差改变很小,使训练过程几乎停顿;为了使网络执行BP算法,不能用传统的一维搜索法求每次迭代的步长,而必须把步长的更新规则预先赋予网络,这种方法将引起算法低效。 有机化学里的PNN什么意概率神经网络。深度神经网络指的是微软推出了一新款语音识别软件,其工作原理是模仿人脑思考方式,从而使该软件的语音识别速度更快,识别准确率也更高。 有机化学是化学的一个分支学科,是研究碳氢化合物及其衍生物的结构、性质和反应的学科。结构的研究包括通过光谱、化学计算和计算机模拟等手段研究化合物的分子结构和晶体结构特征。 性质研究包括化合物的物理和化学性质,以及化学反应性的预测。 ? |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 | -2024/11/25 20:36:05- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |