| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> 神经网络 语音识别神经网络语音合成 -> 正文阅读 |
|
[人工智能]神经网络 语音识别神经网络语音合成 |
语音处理技术流程是什么?语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门新兴学科。语音信号处理的应用极为广泛,其中的主要技术包括语音编码、语音合成、语音识别和语音增强等。本文选取语音识别作为重点讨论课题。 语音识别就是让计算机听懂人的话,并做出正确的反应。目前主流的语音识别技术是基于统计模式识别的基本理论。本文首先对语音信号处理进行了概述,其中包括各种处理技术、发展及应用。 接下来主要介绍了语音识别方面的知识。根据语音识别系统的基本构成模型,介绍了预处理、端点检测到模板匹配各个部分所涉及到的语音数字信号处理原理和方法。 重点研究了孤立词识别系统的原理、构成及各部分的实现算法。 谷歌人工智能写作项目:神经网络伪原创 如何调用微软神经网络语音合成声音晓晓?1.? ? 创建Azure 账号文案狗。2.??? 访问微软Azure云管理平台。 3.??? 根据操作说明?(英文版),添加语音服务的订阅。 (注意:地区Location选择东南亚Southeast Asia)4.??? 根据语音API调用说明(英文版),调用神经网络声音,声音名称:Microsoft Server Speech Text to Speech Voice (zh-CN, XiaoxiaoNeural)。 语音识别技术的基本方法一般来说,语音识别的方法有三种:基于声道模型和语音知识的方法、模板匹配的方法以及利用人工神经网络的方法。 该方法起步较早,在语音识别技术提出的开始,就有了这方面的研究,但由于其模型及语音知识过于复杂,现阶段没有达到实用的阶段。 通常认为常用语言中有有限个不同的语音基元,而且可以通过其语音信号的频域或时域特性来区分。这样该方法分为两步实现:第一步,分段和标号把语音信号按时间分成离散的段,每段对应一个或几个语音基元的声学特性。 然后根据相应声学特性对每个分段给出相近的语音标号第二步,得到词序列根据第一步所得语音标号序列得到一个语音基元网格,从词典得到有效的词序列,也可结合句子的文法和语义同时进行。 模板匹配的方法发展比较成熟,目前已达到了实用阶段。在模板匹配方法中,要经过四个步骤:特征提取、模板训练、模板分类、判决。 常用的技术有三种:动态时间规整(DTW)、隐马尔可夫(HMM)理论、矢量量化(VQ)技术。1、动态时间规整(DTW)语音信号的端点检测是进行语音识别中的一个基本步骤,它是特征训练和识别的基础。 所谓端点检测就是在语音信号中的各种段落(如音素、音节、词素)的始点和终点的位置,从语音信号中排除无声段。在早期,进行端点检测的主要依据是能量、振幅和过零率。但效果往往不明显。 60年代日本学者Itakura提出了动态时间规整算法(DTW:DynamicTimeWarping)。算法的思想就是把未知量均匀的升长或缩短,直到与参考模式的长度一致。 在这一过程中,未知单词的时间轴要不均匀地扭曲或弯折,以使其特征与模型特征对正。 2、隐马尔可夫法(HMM)隐马尔可夫法(HMM)是70年代引入语音识别理论的,它的出现使得自然语音识别系统取得了实质性的突破。 HMM方法现已成为语音识别的主流技术,目前大多数大词汇量、连续语音的非特定人语音识别系统都是基于HMM模型的。 HMM是对语音信号的时间序列结构建立统计模型,将之看作一个数学上的双重随机过程:一个是用具有有限状态数的Markov链来模拟语音信号统计特性变化的隐含的随机过程,另一个是与Markov链的每一个状态相关联的观测序列的随机过程。 前者通过后者表现出来,但前者的具体参数是不可测的。人的言语过程实际上就是一个双重随机过程,语音信号本身是一个可观测的时变序列,是由大脑根据语法知识和言语需要(不可观测的状态)发出的音素的参数流。 可见HMM合理地模仿了这一过程,很好地描述了语音信号的整体非平稳性和局部平稳性,是较为理想的一种语音模型。3、矢量量化(VQ)矢量量化(VectorQuantization)是一种重要的信号压缩方法。 与HMM相比,矢量量化主要适用于小词汇量、孤立词的语音识别中。其过程是:将语音信号波形的k个样点的每一帧,或有k个参数的每一参数帧,构成k维空间中的一个矢量,然后对矢量进行量化。 量化时,将k维无限空间划分为M个区域边界,然后将输入矢量与这些边界进行比较,并被量化为“距离”最小的区域边界的中心矢量值。 矢量量化器的设计就是从大量信号样本中训练出好的码书,从实际效果出发寻找到好的失真测度定义公式,设计出最佳的矢量量化系统,用最少的搜索和计算失真的运算量,实现最大可能的平均信噪比。 核心思想可以这样理解:如果一个码书是为某一特定的信源而优化设计的,那么由这一信息源产生的信号与该码书的平均量化失真就应小于其他信息的信号与该码书的平均量化失真,也就是说编码器本身存在区分能力。 在实际的应用过程中,人们还研究了多种降低复杂度的方法,这些方法大致可以分为两类:无记忆的矢量量化和有记忆的矢量量化。无记忆的矢量量化包括树形搜索的矢量量化和多级矢量量化。 利用人工神经网络的方法是80年代末期提出的一种新的语音识别方法。 人工神经网络(ANN)本质上是一个自适应非线性动力学系统,模拟了人类神经活动的原理,具有自适应性、并行性、鲁棒性、容错性和学习特性,其强的分类能力和输入-输出映射能力在语音识别中都很有吸引力。 但由于存在训练、识别时间太长的缺点,目前仍处于实验探索阶段。由于ANN不能很好的描述语音信号的时间动态特性,所以常把ANN与传统识别方法结合,分别利用各自优点来进行语音识别。 BP神经网络的原理的BP什么意思人工神经网络有很多模型,但是日前应用最广、基本思想最直观、最容易被理解的是多层前馈神经网络及误差逆传播学习算法(Error Back-Prooaeation),简称为BP网络。 在1986年以Rumelhart和McCelland为首的科学家出版的《Parallel Distributed Processing》一书中,完整地提出了误差逆传播学习算法,并被广泛接受。 多层感知网络是一种具有三层或三层以上的阶层型神经网络。 典型的多层感知网络是三层、前馈的阶层网络(图4.1),即:输入层、隐含层(也称中间层)、输出层,具体如下:图4.1 三层BP网络结构(1)输入层输入层是网络与外部交互的接口。 一般输入层只是输入矢量的存储层,它并不对输入矢量作任何加工和处理。输入层的神经元数目可以根据需要求解的问题和数据表示的方式来确定。 一般而言,如果输入矢量为图像,则输入层的神经元数目可以为图像的像素数,也可以是经过处理后的图像特征数。 (2)隐含层1989年,Robert Hecht Nielsno证明了对于任何在闭区间内的一个连续函数都可以用一个隐层的BP网络来逼近,因而一个三层的BP网络可以完成任意的n维到m维的映射。 增加隐含层数虽然可以更进一步的降低误差、提高精度,但是也使网络复杂化,从而增加了网络权值的训练时间。 误差精度的提高也可以通过增加隐含层中的神经元数目来实现,其训练效果也比增加隐含层数更容易观察和调整,所以一般情况应优先考虑增加隐含层的神经元个数,再根据具体情况选择合适的隐含层数。 (3)输出层输出层输出网络训练的结果矢量,输出矢量的维数应根据具体的应用要求来设计,在设计时,应尽可能减少系统的规模,使系统的复杂性减少。 如果网络用作识别器,则识别的类别神经元接近1,而其它神经元输出接近0。 以上三层网络的相邻层之间的各神经元实现全连接,即下一层的每一个神经元与上一层的每个神经元都实现全连接,而且每层各神经元之间无连接,连接强度构成网络的权值矩阵W。 BP网络是以一种有教师示教的方式进行学习的。首先由教师对每一种输入模式设定一个期望输出值。然后对网络输入实际的学习记忆模式,并由输入层经中间层向输出层传播(称为“模式顺传播”)。 实际输出与期望输出的差即是误差。按照误差平方最小这一规则,由输出层往中间层逐层修正连接权值,此过程称为“误差逆传播”(陈正昌,2005)。 所以误差逆传播神经网络也简称BP(Back Propagation)网。随着“模式顺传播”和“误差逆传播”过程的交替反复进行。 网络的实际输出逐渐向各自所对应的期望输出逼近,网络对输入模式的响应的正确率也不断上升。通过此学习过程,确定下各层间的连接权值后。 典型三层BP神经网络学习及程序运行过程如下(标志渊,2006):(1)首先,对各符号的形式及意义进行说明:网络输入向量Pk=(a1,a2,...,an);网络目标向量Tk=(y1,y2,...,yn);中间层单元输入向量Sk=(s1,s2,...,sp),输出向量Bk=(b1,b2,...,bp);输出层单元输入向量Lk=(l1,l2,...,lq),输出向量Ck=(c1,c2,...,cq);输入层至中间层的连接权wij,i=1,2,...,n,j=1,2,...p;中间层至输出层的连接权vjt,j=1,2,...,p,t=1,2,...,p;中间层各单元的输出阈值θj,j=1,2,...,p;输出层各单元的输出阈值γj,j=1,2,...,p;参数k=1,2,...,m。 (2)初始化。给每个连接权值wij、vjt、阈值θj与γj赋予区间(-1,1)内的随机值。(3)随机选取一组输入和目标样本 提供给网络。 (4)用输入样本 、连接权wij和阈值θj计算中间层各单元的输入sj,然后用sj通过传递函数计算中间层各单元的输出bj。 基坑降水工程的环境效应与评价方法bj=f(sj) j=1,2,...,p (4.5)(5)利用中间层的输出bj、连接权vjt和阈值γt计算输出层各单元的输出Lt,然后通过传递函数计算输出层各单元的响应Ct。 基坑降水工程的环境效应与评价方法Ct=f(Lt) t=1,2,...,q (4.7)(6)利用网络目标向量 ,网络的实际输出Ct,计算输出层的各单元一般化误差 。 基坑降水工程的环境效应与评价方法(7)利用连接权vjt、输出层的一般化误差dt和中间层的输出bj计算中间层各单元的一般化误差 。 基坑降水工程的环境效应与评价方法(8)利用输出层各单元的一般化误差 与中间层各单元的输出bj来修正连接权vjt和阈值γt。 基坑降水工程的环境效应与评价方法(9)利用中间层各单元的一般化误差 ,输入层各单元的输入Pk=(a1,a2,...,an)来修正连接权wij和阈值θj。 基坑降水工程的环境效应与评价方法(10)随机选取下一个学习样本向量提供给网络,返回到步骤(3),直到m个训练样本训练完毕。 (11)重新从m个学习样本中随机选取一组输入和目标样本,返回步骤(3),直到网路全局误差E小于预先设定的一个极小值,即网络收敛。如果学习次数大于预先设定的值,网络就无法收敛。(12)学习结束。 可以看出,在以上学习步骤中,(8)、(9)步为网络误差的“逆传播过程”,(10)、(11)步则用于完成训练和收敛过程。通常,经过训练的网络还应该进行性能测试。 测试的方法就是选择测试样本向量,将其提供给网络,检验网络对其分类的正确性。测试样本向量中应该包含今后网络应用过程中可能遇到的主要典型模式(宋大奇,2006)。 这些样本可以直接测取得到,也可以通过仿真得到,在样本数据较少或者较难得到时,也可以通过对学习样本加上适当的噪声或按照一定规则插值得到。 为了更好地验证网络的泛化能力,一个良好的测试样本集中不应该包含和学习样本完全相同的模式(董军,2007)。 rbf神经网络算法流程图? |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 | -2024/12/28 2:47:57- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |
数据统计 |