IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 监督学习和无监督学习 -> 正文阅读

[人工智能]监督学习和无监督学习

机器学习主要包括两种问题,监督学习和无监督学习。在这篇文章中将介绍什么是监督学习和无监督学习(基本思想)。

监督学习

我们用一个例子介绍什么是监督学习,把正式的定义放在后面介绍。

假如说你想预测房价。目前已经收集了一些房价的数据,把这些数据画出来,看起来是这个样子:横轴表示房子的面积,单位是平方英尺,纵轴表示房价,单位是千美元。基于这组数据,假如你有一个朋友,他有一套 750 平方英尺房子,现在他希望把房子卖掉,他想知道这房子能卖多少钱。

那么关于这个问题,机器学习算法将会怎么帮助你呢?
在这里插入图片描述
我们应用学习算法,可以在这组数据中画一条直线,或者换句话说,拟合一条直线,根据这条线我们可以推测出,这套房子可能卖$150,000;或者用二次方程拟合一条曲线,可能效果会更好,我们可以从这个点推测出,这套房子能卖接近$200,000。两个方案中有一个能让你朋友的房子出售得更合理。以上就是监督学习的例子。

可以看出,监督学习指的就是我们给学习算法一个数据集。这个数据集由“正确答案”组成。在房价的例子中,我们给了一系列房子的数据,我们给定数据集中每个样本的正确价格,即它们实际的售价然后运用学习算法,算出更多的正确答案。比如你朋友那个新房子的价格。用术语来讲,这叫做回归问题。我们试着推测出一个连续值的结果,即房子的价格。回归这个词的意思是,我们在试着推测出这一系列连续值属性。

再举另外一个监督学习的例子。

假设说你想通过查看病历来推测乳腺癌良性与否。让我们来看一组数据:这个数据中,横轴表示肿瘤的大小,纵轴上,我标出 1 和 0 表示是或者不是恶性肿瘤。我们之前见过的肿瘤,如果是恶性则记为 1,不是恶性,或者说良性记为 0。
在这里插入图片描述
假如有 5 个良性肿瘤样本,在 1 的位置有 5 个恶性肿瘤样本。现在我们有一个朋友很不幸检查出乳腺肿瘤。假设说已知她的肿瘤的大小,那么机器学习的问题就在于,你能否估算出肿瘤是恶性的或是良性的概率。用术语来讲,这是一个分类问题

分类指的是,我们试着推测出离散的输出值:0 或 1 良性或恶性,而事实上在分类问题中,输出可能不止两个值。比如说可能有三种乳腺癌,所以你希望预测离散输出 0、1、2、3。0 代表良性,1 表示第 1 类乳腺癌,2 表示第 2 类癌症,3 表示第 3 类,但这也是分类问题。

在其它一些机器学习问题中,可能会遇到不止一种特征。举个例子,我们不仅知道肿瘤的尺寸,还知道对应患者的年龄。

总结:
监督学习:我们数据集中的每个样本都有相应的“正确答案”,再根据这些样本作出预测,就像房子和肿瘤的例子中做的那样。
回归问题,即通过回归来推出一个连续的输出。
分类问题,其目标是推出一组离散的结果。

无监督学习

对于监督学习数据集中每条数据都已经标明是阴性或阳性,即是良性或恶性肿瘤,因此我们已经清楚地指导训练集对应的正确答案。

无监督学习中没有任何的标签、或者是有相同的标签、或者就是没标签。所以我们已知数据集,却不知如何处理,也未告知每个数据点是什么。那么对于这种数据集,你能从数据中找到某种结构吗?无监督学习算法可能会把这些数据分成两个不同的聚集簇。所以叫做聚类算法。

聚类应用的一个例子就是在谷歌新闻中。谷歌新闻每天都在,收集非常多的网络的新闻内容。它再将这些新闻分组,组成有关联的新闻。所以谷歌新闻做的就是搜索非常多的新闻事件,自动地把它们聚类到一起。所以,这些新闻事件全是同一主题的,所以显示到一起。

再举一个一DNA 微观数据的例子。基本思想是输入一组不同个体,对其中的每个个体,你要分析出它们是否有一个特定的基因。技术上,你要分析多少特定基因已经表达。所有这些颜色,红,绿,灰等等颜色,这些颜色展示了相应的程度,即不同的个体是否有着一个特定的基因。你能做的就是运行一个聚类算法,把个体聚类到不同的类或不同类型的组(人)。
在这里插入图片描述
所以这个就是无监督学习,因为我们没有提前告知算法一些信息,比如,这是第一类的人,哪些是第二类的人,还有第三类,等等。只有一堆数据,我们不知道数据里面有什么,不知道谁是什么类型,不知道人们有哪些不同的类型,这些类型又是什么。但你能自动地找到数据中的结构吗?就是说你要自动地聚类那些个体到各个类。我们没有给算法正确答案来回应数据集中的数据,所以这就是无监督学习。

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-10-17 12:33:43  更:2022-10-17 12:38:24 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/25 20:49:05-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码