IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 神经网络的优化器 -> 正文阅读

[人工智能]神经网络的优化器

??优化器是基于梯度的用来更新可训练参数的方法。本文是参考论文《An overview of gradient descent optimization
algorithms
》做出的讨论。我们设置一些符号的含义如下:损失值为 l l l,需要被更新的可训练参数为 w w w,使用 ω \omega ω 来泛指除 w w w 外的其它可训练参数,记 l l l w w w 的偏导函数为 J ( w , ? ω ) = ? l ? w J(w, \, \omega)=\frac{\partial l}{\partial w} J(w,ω)=?w?l?,该函数的自变量为全体可训练参数,记 g t = J ( w t , ? ω t ) g_t=J(w_t, \, \omega_t) gt?=J(wt?,ωt?),设学习率为 λ \lambda λ(常取值为 0.01 0.01 0.01),优化器迭代的次数为 t t t

随机梯度下降

??随机梯度下降法(stochastic gradient descent, SGD)是原始 BP 算法提供的优化器,也是最早在深度学习中应用的优化器。其公式如下:
w t + 1 = w t ? λ g t w_{t+1}=w_t-\lambda g_t wt+1?=wt??λgt???SGD 算法面临着诸多挑战:

  • 当使用 SGD 下降到沟壑或盆地时,SGD 可能产生剧烈的抖动。一方面,抖动可能会使其跳出当前极小值,有机会找到更优的极小值;另一方面,抖动可能使得收敛速度减慢或无法收敛到极小值,此时只能通过手动降低学习率来降低抖动。研究者们最先提出了学习率计划表,为损失值设定阈值及其对应的学习率,当损失值下降到某一阈值时,启用该阈值对应的学习率。但学习率计划表,有针对性没有广泛性,对每一个数据集都需要编制其独有的学习率计划表。
  • SGD 对于所有的可训练参数使用相同的学习率是不恰当的。我们不希望以同样的程度来更新所有参数,对于那些频繁更新的参数我们希望它每次更新能有一个较小的幅度,那些更新频率较低的参数我们希望它每次更新能有一个较大的幅度。

动量

??在沟壑中 SGD 会在沟壑两侧剧烈抖动,而在沟壑的下降方向移动十分缓慢。动量法(momentum)通过累积的方式,可以抑制在沟壑两侧方向上的抖动,在下降方向上使速度叠加。其公式如下:
m t = α m t ? 1 + λ g t m_t = \alpha m_{t-1} + \lambda g_t mt?=αmt?1?+λgt? w t + 1 = w t ? m t w_{t+1} = w_t-m_t wt+1?=wt??mt???其中 α \alpha α 是新引入的常量参数(常取值为 α = 0.9 \alpha=0.9 α=0.9), m t m_t mt? 是为了实现算法而引入的变量。当 g t ? 1 g_{t-1} gt?1? 的符号与 g t g_t gt? 的正负不同时, m t m_t mt? 的累加就会使二者得到一定的抵消,即抑制抖动的作用;当 g t ? 1 g_{t-1} gt?1? 的符号与 g t g_t gt? 的正负相投时, m t m_t mt? 的累加就会使二者叠加,即叠加速度的作用。
在这里插入图片描述

??从上图可以看出 Momentum 在短时间内就将抖动抑制,而 SGD 抖动从未停止。并且 Momentum 对在沟壑下降方向上对速度的叠加效果也很明显,仅用 1426 轮迭代就走出了模型,而 SGD 使用了 14778 轮。

内斯特洛夫加速梯度

??我们蒙着眼睛向前走时,总是伸出自己的两只手,探测自己的前方有无障碍物,以便及时更改前进方向。内斯特洛夫加速梯度(nesterov accelerated gradient,NAG)就使用了这种方法,而是使用前方的梯度来修正当前的前进方向。其公式如下:
m t = α m t ? 1 + λ J ( w t ? α m t ? 1 , ? ω t ? α μ t ? 1 ) m_t = \alpha m_{t-1} + \lambda J(w_t-\alpha m_{t-1}, \, \omega_t - \alpha \mu_{t-1}) mt?=αmt?1?+λJ(wt??αmt?1?,ωt??αμt?1?) w t + 1 = w t ? m t w_{t+1} = w_t-m_t wt+1?=wt??mt???其中 α \alpha α 是新引入的常量参数(常取值为 α = 0.9 \alpha=0.9 α=0.9), m t m_t mt? 是为了实现算法而引入的变量, μ t \mu_t μt? 泛指对应 ω \omega ω m t m_t mt?。接下来我们将通过一幅示意图为读者介绍 NAG 的原理,以及其与 Momentum 的对比。
在这里插入图片描述
??在上图中,Momentum 求当前点的梯度得到图中蓝色短线所示向量,然后再加上动量(图中蓝色长线所示向量)得到最终的更新向量,即图中紫色线所示向量;NAG 不再求当前点的梯度,而是求当前点加上动量所到达的点的梯度,即图中绿色短线所示向量,与动量复合即得到红色线所示的向量。最终 Momentum 将按照紫色向量更新,NAG 将按照红色向量更新。

自适应梯度

??前面我们提到为可训练参数设置相同的学习率是不合理的。自适应梯度(adaptive gradient, AdaGrad)提供了一种为参数动态调整学习率的方法。它为频繁更新的参数设置较低的学习率,为不经常更新的参数设置较高的学习率,从而使每个参数都有自己的更新幅度。其公式如下:
v t = v t ? 1 + g t 2 v_t=v_{t-1}+g_t^2 vt?=vt?1?+gt2? w t + 1 = w t ? λ v t + ? ? g t w_{t+1}=w_t-\frac{\lambda}{\sqrt{v_t+\epsilon}} \cdot g_t wt+1?=wt??vt?+? ?λ??gt???其中为了避免分母为零而引入的常量参数 ? \epsilon ? (常取值为 ? = 1 × 1 0 ? 8 \epsilon=1 \times 10^{-8} ?=1×10?8), v t v_t vt? 是为了实现算法而引入的变量。 v t v_t vt? 一直在对 g t 2 g_t^2 gt2? 做累加,如果一个参数频繁更新必然会导致 v t v_t vt? 增大的幅度超乎寻常,那么 λ v t + ? \frac{\lambda}{\sqrt{v_t+\epsilon}} vt?+? ?λ? 就会超乎寻常的相应变小。这种方式也可以抑制抖动,即让那些梯度有剧烈变化的参数有一个较小的学习率。
在这里插入图片描述
??如图所示 AdaGrad 为 y 配置了较大的学习率,为 x 配置了较小的学习率,从而使其能够快速脱离马鞍。AdaGrad 仅迭代了 2519 轮,而 SGD 迭代了 125005 轮。
??我们看到 v t v_t vt? 一直在做正数累加,总体上会使全体参数的学习率趋向无穷小,在训练的后期会使模型的收敛速度变得极慢。不可否认的是,在训练的后期是需要降低学习率,从而稳定下降到极小值,避免在极小值处抖动。笔者推测,AdaGrad 也是出于这种考量,使用正数累加的方式从总体上来降低学习率,让模型在训练后期稳定下降。但 AdaGrad 的现实表现却不尽如人意。
在这里插入图片描述
??我们可以看到,AdaGrad 在峡谷中十分稳定没有分毫抖动,但不断下降的学习率让它步履维艰,迭代了 100000 轮还没有走出峡谷。
??若想深入了解该方法可查阅原始文献《Adaptive Subgradient Methods for Online Learning and Stochastic Optimization

均方根支撑

??均方根支撑(root mean square prop, RMSProp)是 Geoff Hinton 在他的课堂讲义中提出的一个尚未发表的方法。RMSProp 相对于 AdaGrad 单调减少的学习率有了很大改善,它的 v t v_t vt? 不再是做正数累加,而是使用了衰减平均值,使其能够稳定在一定的范围之中。其公式如下:
v t = β v t ? 1 + ( 1 ? β ) g t 2 v_t=\beta v_{t-1}+(1-\beta)g_t^2 vt?=βvt?1?+(1?β)gt2? w t + 1 = w t ? λ v t + ? ? g t w_{t+1}=w_t - \frac{\lambda}{\sqrt{v_t + \epsilon}} \cdot g_t wt+1?=wt??vt?+? ?λ??gt???其中常量参数 ? \epsilon ? 的作用及常用取值与 AdaGrad 一致,新引入常量参数 β \beta β 作为 v t v_t vt? 的衰减系数(常取值为 β = 0.9 \beta=0.9 β=0.9), v t v_t vt? 是为了实现算法而引入的变量。
在这里插入图片描述
在这里插入图片描述
??可以看到,无论是在马鞍上还是在峡谷中 RMSProp 在速度和抑制抖动方面都有着非常出色的表现。但细心观察会发现 RMSProp 在峡谷底部还是有细微的抖动,看来仅凭学习率来抑制抖动,还是无法做到根除。
??若想深入了解该方法可查阅原始文献《rmsprop: Divide the gradient by a running average of its recent magnitude

自适应矩估计

??自适应矩估计(Adaptive Moment Estimation, Adam)是个缝合怪,它把 Momentum 和 RMSProp 缝合到了一起,使得它既有自适应调节学习率的能力,也有动量抑制抖动、叠加速度的能力。其表达式如下:
{ m t = α ? m t ? 1 + ( 1 ? α ) g t v t = β ? v t ? 1 + ( 1 ? β ) g t 2 \left\{ \begin{array}{l} m_t=\alpha \cdot m_{t-1}+(1-\alpha) g_t\\ v_t=\beta \cdot v_{t-1}+(1-\beta) g_t^2 \end{array} \right. {mt?=α?mt?1?+(1?α)gt?vt?=β?vt?1?+(1?β)gt2?? w t + 1 = w t ? λ v t 1 ? β t + ? ? m t 1 ? α t w_{t+1}=w_t - \frac{\lambda}{\sqrt{\frac{v_t}{1-\beta^t}}+\epsilon} \cdot \frac{m_t}{1-\alpha^t} wt+1?=wt??1?βtvt?? ?+?λ??1?αtmt????其中 α \alpha α β \beta β 是用作衰减系数的常量参数(常取值为 α = 0.9 , β = 0.999 \alpha=0.9,\beta=0.999 α=0.9,β=0.999),常量参数 ? \epsilon ? 的作用及常用取值与 AdaGrad 一致, m t m_t mt? v t v_t vt? 是为了实现算法而引入的变量。值得注意的是 Adam 的作者对 m t m_t mt? v t v_t vt? 做了如下处理: m t 1 ? α t \frac{m_t}{1-\alpha^t} 1?αtmt?? v t 1 ? β t \frac{v_t}{1-\beta^t} 1?βtvt??。是因为作者发现 m t m_t mt? v t v_t vt? 在初始化时为零,所以在刚开始迭代时其值很小(特别是在衰减值设置的很大的时候)。所以作者加入 m t 1 ? α t \frac{m_t}{1-\alpha^t} 1?αtmt?? v t 1 ? β t \frac{v_t}{1-\beta^t} 1?βtvt??,在刚开始迭代时使其得到适当放大。可以看到随着迭代次数的增加 1 ? α t 1-\alpha^t 1?αt 1 ? β t 1-\beta^t 1?βt 的值逐渐趋于 1 1 1,所以迭代次数达到一定值时,二者的影响就可以忽略不计了。
在这里插入图片描述
??通过上图可以看到可以看到 Adam 相对于 RMSProp 在马鞍上的表现更为优秀,下降曲线也比较平滑。
在这里插入图片描述
??通过上图可以看到,虽然 Adam 的下降速度比 RMSProp 慢一些,但是在峡谷中没有像 RMSProp 一样发生抖动。
在这里插入图片描述
??通过上图可以更直观的看出 Adam 的优势,Adam 经过 1379 轮迭代后下降到了最小值点,而 RMSProp 一直在最小值附近抖动,经过 100000 轮迭代还没有稳定下来。
??若想深入了解该方法可查阅原始文献《ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION

附录

??以下为笔者将优化器的表现可视化所使用的代码:

from matplotlib import pyplot as plt
from matplotlib import colors
import numpy as np


class Ravine:
    @staticmethod
    def get_name():
        return 'Ravine'

    # 模型的方程
    @staticmethod
    def function(x, y):
        return -np.cos(2 * x) * 50 + np.power(np.e, y)

    # 模型的梯度
    @staticmethod
    def gradient(x, y):
        return np.sin(2 * x) * 100, np.power(np.e, y)

    # 输出模型的范围,依次为:x 轴最小值、x 轴最大值、y 轴最小值、y 轴最大值
    @staticmethod
    def get_scope():
        return -1, 1, -5, 1

    # 输出优化器在本模型上梯度下降的起点
    @staticmethod
    def get_start():
        return -0.8, 0.5


class Saddle:
    @staticmethod
    def get_name():
        return 'Saddle'

    @staticmethod
    def function(x, y):
        return x * x - y * y * y * y

    @staticmethod
    def gradient(x, y):
        return x * 2, -y * y * y * 4

    @staticmethod
    def get_scope():
        return -2, 2, -2, 2

    @staticmethod
    def get_start():
        return -1, -0.01


class Beale:
    @staticmethod
    def get_name():
        return 'Beale'

    @staticmethod
    def function(x, y):
        return (1.5 - x * y)**2 + (2.25 - x - x * y * y)**2 + (2.625 - x + x * y * y * y)**2

    @staticmethod
    def gradient(x, y):
        gradient_x = 2 * ((1.5 - x + x * y) * (-1 + y) + (2.25 - x + x * y * y) * (-1 + y * y) + (
                    2.625 - x + x * y * y * y) * (-1 + y * y * y))
        gradient_y = 2 * ((1.5 - x + x * y) * x + (2.25 - x + x * y * y) * (2 * x * y) + (2.625 - x + x * y * y * y) * (
                    3 * x * y * y))
        return gradient_x, gradient_y

    @staticmethod
    def get_scope():
        return -5, 5, -5, 5

    @staticmethod
    def get_start():
        return 1.5, 1.2


class SGD:
    _learning_rate = 0.01

    def optimize(self, gradient_w, w, t):
        w = w - self._learning_rate * gradient_w
        return w


class Momentum:
    _learning_rate = 0.01
    _alpha = 0.9

    def __init__(self):
        self.m = 0

    def optimize(self, gradiant_w, w, t):
        self.m = self._alpha * self.m + self._learning_rate * gradiant_w
        w = w - self.m
        return w


class NAG:
    _learning_rate = 0.01
    _alpha = 0.9

    def __init__(self):
        self.m = 0

    def get_momentum(self):
        return self._alpha * self.m

    def optimize(self, detection_gradiant_w, w, t):
        self.m = self._alpha * self.m + self._learning_rate * detection_gradiant_w
        w = w - self.m
        return w


class AdaGrad:
    _learning_rate = 0.01
    _epsilon = 0.0000000001

    def __init__(self):
        self.v = 0

    def optimize(self, gradient_w, w, t):
        self.v = self.v + gradient_w**2
        w = w - self._learning_rate / np.sqrt(self.v + self._epsilon) * gradient_w
        return w


class RMSProp:
    _learning_rate = 0.01
    _beta = 0.9
    _epsilon = 0.0000000001

    def __init__(self):
        self.v = 0

    def optimize(self, gradient_w, w, t):
        self.v = self._beta * self.v + (1 - self._beta) * gradient_w**2
        w = w - self._learning_rate / np.sqrt(self.v + self._epsilon) * gradient_w
        return w


class AdaDelta:
    _beta = 0.9
    _epsilon = 0.0000000001

    def __init__(self):
        self.v = 0
        self.d = 0

    def optimize(self, gradient_w, w, t):
        self.v = self._beta * self.v + (1 - self._beta) * gradient_w**2
        t = np.sqrt(self.d + self._epsilon) / np.sqrt(self.v + self._epsilon) * gradient_w
        w = w - t
        self.d = self._beta * self.d + (1 - self._beta) * t**2
        return w


class Adam:
    _learning_rate = 0.01
    _alpha = 0.9
    _beta = 0.99
    _epsilon = 0.0000000001

    def __init__(self):
        self.m = 0
        self.v = 0

    def optimize(self, gradient_w, w, t):
        self.m = self._alpha * self.m + (1 - self._alpha) * gradient_w
        self.v = self._beta * self.v + (1 - self._beta) * gradient_w**2
        w = w - self._learning_rate \
            / (np.sqrt(self.v / (1 - np.power(self._beta, t))) + self._epsilon) \
            * self.m / (1 - np.power(self._alpha, t))
        return w


optimizers = {
    'SGD': SGD,
    'Momentum': Momentum,
    'NAG': NAG,
    'AdaGrad': AdaGrad,
    'RMSProp': RMSProp,
    'AdaDelta': AdaDelta,
    'Adam': Adam,
}


def experiment(axes, model, optimizer):
    scope = model.get_scope()
    x, y = np.meshgrid(np.linspace(scope[0], scope[1], 100), np.linspace(scope[2], scope[3], 100))
    z = model.function(x, y)
#    axes.plot_surface(x, y, z, zorder=1)                                        # 在图上绘制模型
    axes.plot_surface(x, y, z, zorder=1, norm=colors.LogNorm(), cmap='jet')     # 在图上绘制模型
    axes.set_xlabel('x')
    axes.set_ylabel('y')
    axes.set_zlabel('z')
    axes.set_title(f'%s in %s' % (optimizer, model.get_name()))

    optimizer_x = optimizers[optimizer]()   # 为 x 生成优化器
    optimizer_y = optimizers[optimizer]()   # 为 y 生成优化器
    x, y = model.get_start()
    xa, ya = [x], [y]       # 用于记录下降过程中经过的点
    t = 1       # 记录迭代轮次
    while (t < 10
           or (t < 100000
               and not (ya[-1] == ya[-2] and xa[-1] == xa[-2])
               and (scope[0] < x < scope[1] and scope[2] < y < scope[3]))):
        if optimizer == 'NAG':      # 计算梯度
            gradient_x, gradient_y = model.gradient(x - optimizer_x.get_momentum(), y - optimizer_y.get_momentum())
        else:
            gradient_x, gradient_y = model.gradient(x, y)
        x = optimizer_x.optimize(gradient_x, x, t)      # 用优化器优化
        y = optimizer_y.optimize(gradient_y, y, t)      # 用优化器优化
        xa.append(x)
        ya.append(y)
        t = t + 1

    za = [model.function(i, j) for i, j in zip(xa, ya)]         # 生成下降时经过的点的 z 轴坐标
    axes.plot(xa, ya, za, zorder=3, label=optimizer)            # 在图上绘制下降路线
    axes.text(x, y, model.function(x, y), f'epoch=%d' % t)
    axes.legend()


if __name__ == '__main__':
    experiment(plt.subplot(121, projection='3d'), Beale, 'RMSProp')
    experiment(plt.subplot(122, projection='3d'), Beale, 'Adam')
    plt.show()

??以下为生成 NAG 示意图的代码:

from matplotlib import pyplot as plt
import numpy as np

ax = plt.subplot(111, aspect='equal')
ax.axis('off')
ax.arrow(0.00, 0.00, 0.02, 0.04, length_includes_head=True, color='b')
ax.arrow(0.02, 0.04, 0.08, 0.04, length_includes_head=True, color='b')
ax.arrow(0.00, 0.00, 0.10, 0.08, length_includes_head=True, color='m')
ax.arrow(0.00, 0.00, 0.08, 0.04, length_includes_head=True, color='g')
ax.arrow(0.08, 0.04, 0.02, -0.04, length_includes_head=True, color='g')
ax.arrow(0.00, 0.00, 0.10, 0.00, length_includes_head=True, color='r')
ax.text(-0.015, 0.02, r'$-\lambda \cdot J(w_t, \omega_t)$', color='b', size=12)
ax.text(0.048, 0.061, r'$-\alpha m_t$', color='b', size=12)
ax.text(0.06, 0.045, r'$-\alpha m_t-\lambda \cdot J(w_t, \omega_t)$', color='m', size=12)
ax.text(0.083, 0.082, 'Momentum', color='m', size=16)
ax.text(0.04, 0.027, r'$-\alpha m_t$', color='g', size=12)
ax.text(0.045, 0.010, r'$-\lambda \cdot J(w_t - \alpha m_t, \omega_t - \alpha\mu_t)$', color='g', size=12)
ax.text(0.02, -0.004, r'$-\alpha m_t - \lambda \cdot J(w_t - \alpha m_t, \omega_t - \alpha\mu_t)$', color='r', size=12)
ax.text(0.102, -0.002, 'NAG', color='r', size=16)
plt.show()
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-10-17 12:33:43  更:2022-10-17 12:38:37 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年5日历 -2024/5/19 21:52:17-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码