IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 深度神经网络 英语深度神经网络英文 -> 正文阅读

[人工智能]深度神经网络 英语深度神经网络英文

深度学习学什么?

深度学习主要学的有:神经网络、BP反向传播算法、TensorFlow深度学习工具等。

深度学习英文全称为:deep learning,是机器学习的分支,主要是把人工神经网络当作构架,进而对数据进行表征学习的算法。

至今已有数种深度学习框架,如深度神经网络、卷积神经网络和深度置信网络和递归神经网络已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

另外,“深度学习”已成为类似术语,或者说是神经网络的品牌重塑。通过多层处理,逐渐将初始的“低层”特征表示转化为“高层”特征表示后,用“简单模型”即可完成复杂的分类等学习任务。

由此可将深度学习理解为进行“特征学习”或“表示学习”。以往在机器学习用于现实任务时,描述样本的特征通常需由人类专家来设计,这成为“特征工程”(feature engineering)。

众所周知,特征的好坏对泛化性能有至关重要的影响,人类专家设计出好特征也并非易事;特征学习(表征学习)则通过机器学习技术自身来产生好特征,这使机器学习向“全自动数据分析”又前进了一步。

而深度学习的主要应用场景为:语音识别微软研究人员通过与hinton合作,首先将RBM和DBN引入到语音识别声学模型训练中,并且在大词汇量语音识别系统中获得巨大成功,使得语音识别的错误率相对减低30%。

但是,DNN还没有有效的并行快速算法,很多研究机构都是在利用大规模数据语料通过GPU平台提高DNN声学模型的训练效率。

在国际上,IBM、google等公司都快速进行了DNN语音识别的研究,并且速度飞快。国内方面,阿里巴巴,科大讯飞、百度、中科院自动化所等公司或研究单位,也在进行深度学习在语音识别上的研究。

自然语言处理等其他领域很多机构在开展研究,2013年Tomas Mikolov,Kai Chen,Greg Corrado,Jeffrey Dean发表论文Efficient Estimation of Word Representations in Vector Space建立word2vector模型,与传统的词袋模型(bag of words)相比,word2vector能够更好地表达语法信息。

深度学习在自然语言处理等领域主要应用于机器翻译以及语义挖掘等方面。

谷歌人工智能写作项目:神经网络伪原创

什么是深度学习(deep learning)?

深度学习 deep learning深度学习定义:欣顿(Hinton)等提出的一种研究信息的最佳表示及其获取方法的技术,在神经网络或信念网络的情况下是对基于深层结构或网络表示的输入输出间映射进行机器学习的过程好文案

学科:计算机科学技术_人工智能_神经网络相关名词:数据挖掘 人工智能 机器学习【深度学习相关】深度学习(deep learning),属于机器学习(machine learning)的学术、工程领域研究中一个新的方向,目的是实现人工智能(artificial intelligence)的普及化。

深度学习的具体过程可简述为:挖掘所给样本数据的内在规律与联系,提取、分析样本的特征信息,如图像、文本和声音,处理数据信息并发出指令,控制机器的行为,使机器具有类似于人类的学习、分析、识别、处理等能力。

深度学习是一类模式分析方法的统称,就具体研究内容而言,大致有卷积神经网络、基于多层神经元的自编码神经网络和深度置信网络三类。

目前,深度学习在多个领域取得了很大成果,如数据挖掘、机器翻译、语音识别、人脸支付、推荐服务、个性化搜索。

深度学习可使机器高度模仿人类社会的具体活动,对很多复杂的识别模式很有帮助,促进了蓝海大脑深度学习服务器等相关人工智能领域的发展。(西北工业大学副教授 周竞涛)

如何进行英语的深度教学

越来越多的家长不计代价地在考虑把孩子送到国际化的私立学校,而语言对于中国的多数孩子都是一个亟待解决的门槛。中国人花费最多的时间,英语水平在世界上却远远落后。所以我们的英语学习需要讲究深度。

深度学习一词源于人工神经网络的研究,是一种更深次结构的学习方式。无论处于什么学习课程,其目的就是为了激发积极性。在深度学习的活动中,教师要适当增添英语语言的量,引导学生用英语交流。

这样可以确保学生的综合语言能力,优化学生的英语知识系统结构。1、英语深度学习的共性教师要根据每堂课的主题,引导学生自由提问,给他们提供发散思维空间的能力,调动学生对学习的积极性。

尽量为学生提供自主选择深度的机会,也就是根据教学内容,在不同不同的情境中可以设计英语的听、说、读、写等不同的活动,提高学生的综合语言运用能力。

2、英语深度学习的个性差异(1)英语词汇句型在教学中的深度学习要寓词于句,寓教于乐。词汇量是学好英语的重要基础,在深度学习的活动中设计真实的语境,让学生能够合理运用句型。(2)优化设计教学任务。

在一篇新的阅读中,可以让结合上下文正确判断推测的内容,一个新单词的意思。这也是一种阅读技能的很好培养。(3)充分调动感器,鼓励积极参与。

小学英语活动课教学是引导学生从书本走向生活,从课堂走向社会,开放性的教学。深度学习活动可以贴近生活,选择学生感兴趣的话题进行展开学习,积极调动学生语言学习的主观能动性。

深度学习活动可以说是集社会实践知识、丰富有趣为一体的。让每个学生都有机会去深度体验,最主要是重在参与。(4)深度学习要学会抓住主线,然后层层递进。培养学生的阅读能力是英语教育的目的之一。

阅读的过程也是语言认知的过程,不仅能扩大词汇量,拥有丰富的语言知识,提高语言运用能力,还能训练学生的思维能力、判断能力和理解能力。我建议大家尝试下近年来特别火爆的英语学习机构——学利斯。

他们在教材选择、师资力量等各方面都毫不逊色主流机构。而且学利斯还走的是在线一对一外教的教学模式,不仅省时省力,而且还省钱。

可以说上课是方便了,省去舟车劳顿,其次收费价格要实惠很多,可以体验下免费试听课。简而言之,英语学习其实也就是语言对思维的反映,语言交流本质上是思维声音的交流。

语言最初的学习要遵循多听,少说,不读写的原则,然后慢慢按照语言学习的顺序和规律去学习,建立英语思维。

深度学习与神经网络有什么区别

找深度学习和神经网络的不同点,其实主要的就是:原来多层神经网络做的步骤是:特征映射到值。特征是人工挑选。深度学习做的步骤是 信号->特征->值。 特征是由网络自己选择。

另外,深度学习作为机器学习的领域中一个新的研究方向,在被引进机器学习后,让机器学习可以更加的接近最初的目标,也就是人工智能。

深度学习主要就是对样本数据的内在规律还有表示层次的学习,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。

它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。

深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。

深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。而神经网络则是可以分为两种,一种是生物神经网络,而另一种则是人工神经网络。

生物神经网络就是生物的大脑神经元、主要是由细胞以及触点组成的,主要的作用就是让生物产生意识,或者是帮助生物实现思考还有行动的目的。神经网络可以指向两种,一个是生物神经网络,一个是人工神经网络。

人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。

这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络:是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。

在工程与学术界也常直接简称为“神经网络”或类神经网络。

深度学习和神经网络的区别是什么

这两个概念实际上是互相交叉的,例如,卷积神经网络(Convolutional neural networks,简称CNNs)就是一种深度的监督学习下的机器学习模型,而深度置信网(Deep Belief Nets,简称DBNs)就是一种无监督学习下的机器学习模型。

深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

深度学习的概念由Hinton等人于2006年提出。基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。

此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。

深度学习和神经网络的区别是什么

这两个概念实际上是互相交叉的,例如,卷积神经网络(Convolutional neural networks,简称CNNs)就是一种深度的监督学习下的机器学习模型,而深度置信网(Deep Belief Nets,简称DBNs)就是一种无监督学习下的机器学习模型。

深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

深度学习的概念由Hinton等人于2006年提出。基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。

此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。

神经网络、深度学习、机器学习是什么?有什么区别和联系?

深度学习是由深层神经网络+机器学习造出来的词。深度最早出现在deep belief network(深度(层)置信网络)。其出现使得沉寂多年的神经网络又焕发了青春。

GPU使得深层网络随机初始化训练成为可能。resnet的出现打破了层次限制的魔咒,使得训练更深层次的神经网络成为可能。深度学习是神经网络的唯一发展和延续。

在现在的语言环境下,深度学习泛指神经网络,神经网络泛指深度学习。在当前的语境下没有区别。定义生物神经网络主要是指人脑的神经网络,它是人工神经网络的技术原型。

人脑是人类思维的物质基础,思维的功能定位在大脑皮层,后者含有大约10^11个神经元,每个神经元又通过神经突触与大约103个其它神经元相连,形成一个高度复杂高度灵活的动态网络。

作为一门学科,生物神经网络主要研究人脑神经网络的结构、功能及其工作机制,意在探索人脑思维和智能活动的规律。

人工神经网络是生物神经网络在某种简化意义下的技术复现,作为一门学科,它的主要任务是根据生物神经网络的原理和实际应用的需要建造实用的人工神经网络模型,设计相应的学习算法,模拟人脑的某种智能活动,然后在技术上实现出来用以解决实际问题。

因此,生物神经网络主要研究智能的机理;人工神经网络主要研究智能机理的实现,两者相辅相成。

深度学习是什么?

深度学来习(人工神经网络的研究的概念)深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI, Artificial Intelligence)。

深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。

深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前自相关技术。

深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。

深度学习使机器模仿视听和思考等人类的活动zhidao,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。

深度学习是什么?学完能干什么?

深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

深度学习的概念由Hinton等人于2006年提出。基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。

此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。

深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。

深度学习与神经网络有什么区别

深度学习与神经网络关系2017-01-10最近开始学习深度学习,基本上都是zouxy09博主的文章,写的蛮好,很全面,也会根据自己的思路,做下删减,细化。

五、Deep Learning的基本思想假设我们有一个系统S,它有n层(S1,…Sn),它的输入是I,输出是O,形象地表示为: I =>S1=>S2=>…..=>Sn => O,如果输出O等于输入I,即输入I经过这个系统变化之后没有任何的信息损失(呵呵,大牛说,这是不可能的。

信息论中有个“信息逐层丢失”的说法(信息处理不等式),设处理a信息得到b,再对b处理得到c,那么可以证明:a和c的互信息不会超过a和b的互信息。这表明信息处理不会增加信息,大部分处理会丢失信息。

当然了,如果丢掉的是没用的信息那多好啊),保持了不变,这意味着输入I经过每一层Si都没有任何的信息损失,即在任何一层Si,它都是原有信息(即输入I)的另外一种表示。

现在回到我们的主题Deep Learning,我们需要自动地学习特征,假设我们有一堆输入I(如一堆图像或者文本),假设我们设计了一个系统S(有n层),我们通过调整系统中参数,使得它的输出仍然是输入I,那么我们就可以自动地获取得到输入I的一系列层次特征,即S1,…, Sn。

对于深度学习来说,其思想就是对堆叠多个层,也就是说这一层的输出作为下一层的输入。通过这种方式,就可以实现对输入信息进行分级表达了。

另外,前面是假设输出严格地等于输入,这个限制太严格,我们可以略微地放松这个限制,例如我们只要使得输入与输出的差别尽可能地小即可,这个放松会导致另外一类不同的Deep Learning方法。

上述就是Deep Learning的基本思想。六、浅层学习(Shallow Learning)和深度学习(Deep Learning)浅层学习是机器学习的第一次浪潮。

20世纪80年代末期,用于人工神经网络的反向传播算法(也叫Back Propagation算法或者BP算法)的发明,给机器学习带来了希望,掀起了基于统计模型的机器学习热潮。这个热潮一直持续到今天。

人们发现,利用BP算法可以让一个人工神经网络模型从大量训练样本中学习统计规律,从而对未知事件做预测。这种基于统计的机器学习方法比起过去基于人工规则的系统,在很多方面显出优越性。

这个时候的人工神经网络,虽也被称作多层感知机(Multi-layer Perceptron),但实际是种只含有一层隐层节点的浅层模型。

20世纪90年代,各种各样的浅层机器学习模型相继被提出,例如支撑向量机(SVM,Support Vector Machines)、 Boosting、最大熵方法(如LR,Logistic Regression)等。

这些模型的结构基本上可以看成带有一层隐层节点(如SVM、Boosting),或没有隐层节点(如LR)。这些模型无论是在理论分析还是应用中都获得了巨大的成功。

相比之下,由于理论分析的难度大,训练方法又需要很多经验和技巧,这个时期浅层人工神经网络反而相对沉寂。深度学习是机器学习的第二次浪潮。

2006年,加拿大多伦多大学教授、机器学习领域的泰斗Geoffrey Hinton和他的学生RuslanSalakhutdinov在《科学》上发表了一篇文章,开启了深度学习在学术界和工业界的浪潮。

这篇文章有两个主要观点:1)多隐层的人工神经网络具有优异的特征学习能力,学习得到的特征对数据有更本质的刻画,从而有利于可视化或分类;2)深度神经网络在训练上的难度,可以通过“逐层初始化”(layer-wise pre-training)来有效克服,在这篇文章中,逐层初始化是通过无监督学习实现的。

当前多数分类、回归等学习方法为浅层结构算法,其局限性在于有限样本和计算单元情况下对复杂函数的表示能力有限,针对复杂分类问题其泛化能力受到一定制约。

深度学习可通过学习一种深层非线性网络结构,实现复杂函数逼近,表征输入数据分布式表示,并展现了强大的从少数样本集中学习数据集本质特征的能力。

(多层的好处是可以用较少的参数表示复杂的函数)深度学习的实质,是通过构建具有很多隐层的机器学习模型和海量的训练数据,来学习更有用的特征,从而最终提升分类或预测的准确性。

因此,“深度模型”是手段,“特征学习”是目的。

区别于传统的浅层学习,深度学习的不同在于:1)强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点;2)明确突出了特征学习的重要性,也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更加容易。

与人工规则构造特征的方法相比,利用大数据来学习特征,更能够刻画数据的丰富内在信息。

七、Deep learning与Neural Network深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。

深度学习是无监督学习的一种。深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

Deep learning本身算是machine learning的一个分支,简单可以理解为neural network的发展。

大约二三十年前,neural network曾经是ML领域特别火热的一个方向,但是后来确慢慢淡出了,原因包括以下几个方面:1)比较容易过拟合,参数比较难tune,而且需要不少trick;2)训练速度比较慢,在层次比较少(小于等于3)的情况下效果并不比其它方法更优;所以中间有大约20多年的时间,神经网络被关注很少,这段时间基本上是SVM和boosting算法的天下。

但是,一个痴心的老先生Hinton,他坚持了下来,并最终(和其它人一起Bengio、Yann.lecun等)提成了一个实际可行的deep learning框架。

Deep learning与传统的神经网络之间有相同的地方也有很多不同。

二者的相同在于deep learning采用了神经网络相似的分层结构,系统由包括输入层、隐层(多层)、输出层组成的多层网络,只有相邻层节点之间有连接,同一层以及跨层节点之间相互无连接,每一层可以看作是一个logistic regression模型;这种分层结构,是比较接近人类大脑的结构的。

而为了克服神经网络训练中的问题,DL采用了与神经网络很不同的训练机制。

传统神经网络(这里作者主要指前向神经网络)中,采用的是back propagation的方式进行,简单来讲就是采用迭代的算法来训练整个网络,随机设定初值,计算当前网络的输出,然后根据当前输出和label之间的差去改变前面各层的参数,直到收敛(整体是一个梯度下降法)。

而deep learning整体上是一个layer-wise的训练机制。

这样做的原因是因为,如果采用back propagation的机制,对于一个deep network(7层以上),残差传播到最前面的层已经变得太小,出现所谓的gradient diffusion(梯度扩散)。

这个问题我们接下来讨论。

八、Deep learning训练过程8.1、传统神经网络的训练方法为什么不能用在深度神经网络BP算法作为传统训练多层网络的典型算法,实际上对仅含几层网络,该训练方法就已经很不理想。

深度结构(涉及多个非线性处理单元层)非凸目标代价函数中普遍存在的局部最小是训练困难的主要来源。

BP算法存在的问题:(1)梯度越来越稀疏:从顶层越往下,误差校正信号越来越小;(2)收敛到局部最小值:尤其是从远离最优区域开始的时候(随机值初始化会导致这种情况的发生);(3)一般,我们只能用有标签的数据来训练:但大部分的数据是没标签的,而大脑可以从没有标签的的数据中学习;8.2、deep learning训练过程如果对所有层同时训练,时间复杂度会太高;如果每次训练一层,偏差就会逐层传递。

这会面临跟上面监督学习中相反的问题,会严重欠拟合(因为深度网络的神经元和参数太多了)。

2006年,hinton提出了在非监督数据上建立多层神经网络的一个有效方法,简单的说,分为两步,一是每次训练一层网络,二是调优,使原始表示x向上生成的高级表示r和该高级表示r向下生成的x'尽可能一致。

方法是:1)首先逐层构建单层神经元,这样每次都是训练一个单层网络。2)当所有层训练完后,Hinton使用wake-sleep算法进行调优。

将除最顶层的其它层间的权重变为双向的,这样最顶层仍然是一个单层神经网络,而其它层则变为了图模型。向上的权重用于“认知”,向下的权重用于“生成”。然后使用Wake-Sleep算法调整所有的权重。

让认知和生成达成一致,也就是保证生成的最顶层表示能够尽可能正确的复原底层的结点。

比如顶层的一个结点表示人脸,那么所有人脸的图像应该激活这个结点,并且这个结果向下生成的图像应该能够表现为一个大概的人脸图像。Wake-Sleep算法分为醒(wake)和睡(sleep)两个部分。

1)wake阶段:认知过程,通过外界的特征和向上的权重(认知权重)产生每一层的抽象表示(结点状态),并且使用梯度下降修改层间的下行权重(生成权重)。

也就是“如果现实跟我想象的不一样,改变我的权重使得我想象的东西就是这样的”。2)sleep阶段:生成过程,通过顶层表示(醒时学得的概念)和向下权重,生成底层的状态,同时修改层间向上的权重。

也就是“如果梦中的景象不是我脑中的相应概念,改变我的认知权重使得这种景象在我看来就是这个概念”。

deep learning训练过程具体如下:1)使用自下上升非监督学习(就是从底层开始,一层一层的往顶层训练):采用无标定数据(有标定数据也可)分层训练各层参数,这一步可以看作是一个无监督训练过程,是和传统神经网络区别最大的部分(这个过程可以看作是feature learning过程):具体的,先用无标定数据训练第一层,训练时先学习第一层的参数(这一层可以看作是得到一个使得输出和输入差别最小的三层神经网络的隐层),由于模型capacity的限制以及稀疏性约束,使得得到的模型能够学习到数据本身的结构,从而得到比输入更具有表示能力的特征;在学习得到第n-1层后,将n-1层的输出作为第n层的输入,训练第n层,由此分别得到各层的参数;2)自顶向下的监督学习(就是通过带标签的数据去训练,误差自顶向下传输,对网络进行微调):基于第一步得到的各层参数进一步fine-tune整个多层模型的参数,这一步是一个有监督训练过程;第一步类似神经网络的随机初始化初值过程,由于DL的第一步不是随机初始化,而是通过学习输入数据的结构得到的,因而这个初值更接近全局最优,从而能够取得更好的效果;所以deep learning效果好很大程度上归功于第一步的feature learning过程。

?

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-10-22 21:15:35  更:2022-10-22 21:16:57 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/29 7:51:21-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码