IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 1018双向循环神经网络 -> 正文阅读

[人工智能]1018双向循环神经网络

在序列学习中,我们以往假设的目标是: 在给定观测的情况下 (例如,在时间序列的上下文中或在语言模型的上下文中), 对下一个输出进行建模。 虽然这是一个典型情景,但不是唯一的。 还可能发生什么其它的情况呢? 我们考虑以下三个在文本序列中填空的任务:

  • ___

  • ___饿了。

  • ___饿了,我可以吃半头猪。

根据可获得的信息量,我们可以用不同的词填空, 如“很高兴”(”happy”)、“不”(”not”)和“非常”(”very”)。 很明显,每个短语的“下文”传达了重要信息(如果有的话), 而这些信息关乎到选择哪个词来填空, 所以无法利用这一点的序列模型将在相关任务上表现不佳。 例如,如果要做好命名实体识别 (例如,识别“Green”指的是“格林先生”还是绿色), 不同长度的上下文范围重要性是相同的。 为了获得一些解决问题的灵感,让我们先迂回到概率图模型。

隐马尔可夫模型中的动态规划

这一小节是用来说明动态规划问题的, 具体的技术细节对于理解深度学习模型并不重要, 但它有助于我们思考为什么要使用深度学习, 以及为什么要选择特定的架构。

如果我们想用概率图模型来解决这个问题, 可以设计一个隐变量模型: 在任意时间步t,假设存在某个隐变量ht, 通过概率P(xt∣ht)控制我们观测到的xt。 此外,任何ht→ht+1转移 都是由一些状态转移概率P(ht+1∣ht)给出。 这个概率图模型就是一个隐马尔可夫模型(hidden Markov model,HMM)。

隐马尔可夫模型

总结:

  • 在双向循环神经网络中,每个时间步的隐状态由当前时间步的前后数据同时决定。

  • 双向循环神经网络与概率图模型中的“前向-后向”算法具有相似性。

  • 双向循环神经网络主要用于序列编码和给定双向上下文的观测估计。

  • 由于梯度链更长,因此双向循环神经网络的训练代价非常高。

代码:

import torch
from torch import nn
from d2l import torch as d2l

batch_size, num_steps, device = 32, 35, d2l.try_gpu()
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
vocab_size, num_hiddens, num_layers = len(vocab), 256, 2
num_inputs = vocab_size
lstm_layer = nn.LSTM(num_inputs, num_hiddens, num_layers, bidirectional=True)  # bidirectional是双向参数
model = d2l.RNNModel(lstm_layer, len(vocab))
model = model.to(device)
num_epochs, lr = 500, 1
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device) # 双向循环神经网络无法预测未来信息

?

import torch
from torch import nn
from d2l import torch as d2l

batch_size, num_steps, device = 32, 35, d2l.try_gpu()
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
vocab_size, num_hiddens, num_layers = len(vocab), 256, 2
num_inputs = vocab_size
lstm_layer = nn.GRU(num_inputs, num_hiddens, num_layers, bidirectional=True)  # bidirectional是双向参数
model = d2l.RNNModel(lstm_layer, len(vocab))
model = model.to(device)
num_epochs, lr = 500, 1
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device) # 双向循环神经网络无法预测未来信息

LSTM 与GUR在处理改数据样本时,效果会更好一些。?

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-10-22 21:15:35  更:2022-10-22 21:17:43 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/25 20:35:45-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码