IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 对抗生成网络GAN系列——CycleGAN简介及图片春冬变换案例 -> 正文阅读

[人工智能]对抗生成网络GAN系列——CycleGAN简介及图片春冬变换案例

🍊作者简介:秃头小苏,致力于用最通俗的语言描述问题

🍊往期回顾:对抗生成网络GAN系列——GAN原理及手写数字生成小案例 ?? 对抗生成网络GAN系列——DCGAN简介及人脸图像生成案例

🍊近期目标:写好专栏的每一篇文章

🍊支持小苏:点赞👍🏼、收藏?、留言📩

?


?

对抗生成网络GAN系列——CycleGAN简介及风景照春冬变换案例

写在前面

? ??在前面我们已经介绍过了最原始的GAN网络和DCGAN,这篇文章我将来为大家介绍CycleGAN,并且基于CycleGAN实现一个小demo——将一张图片进行季节转换,即从冬天变换到夏天和从夏天变换到冬天。🍹🍹🍹

???大家已经看到了CycleGAN,应该对GAN已经有了一定的了解,因此我不会对GAN的原理进行详细的讲解,只会叙述CycleGAN的独到之处。如若你还对GAN的原理不够清楚,下列两篇文章获取能帮到您:

???在正式讲解之前,我给大家先展示一下CycleGAN可以做哪些事:

horse2zebra

普通马变斑马

2222

各种风格转换

准备好了嘛,下面就正式发车了。🚖🚖🚖

?

CycleGAN核心思想

??这一部分我会来介绍CycleGAN的核心思想,相信你了解后会和我有一样的感觉,那就是这个设计太巧妙了!!!🌼🌼🌼

??首先我们还是来介绍一下这篇论文的全称—— Unpaired Image-to-Image Translationusing Cycle-Consistent Adversarial Networks,即非成对图像转换循环一致性对抗网络。我们一点点的来解释,首先什么是非对称图像呢?其实啊,这里的非对称图像指的是我们的训练样本是不相关的。在之前的一些GAN转换实验中,往往都需要成对的图片数据,例如pix2pix,而成对的图片数据是很难获取的,于是CycleGAN对数据的要求就大大降低,不需要成对图像,即非对称图像,这样就让CycleGAN的应用场景就变得非常丰富。下图展示了对称数据和非对称数据的区别:

image-20220724214429247

??接下来再来讲讲什么是循环一致性对抗网络?这个就是本文的核心思想,听懂这个那么这篇论文你就搞懂了,这就为大家慢慢道来!!!🌼🌼🌼

???我们先来明确一下这篇文章的目标,即有两个域的图像,分别为域X和域Y,例如域X表示夏季图片、域Y表示冬季图片,现期望将这两个域的图片互相转换,即输入域X的夏季图片生成器输出域Y的冬季图片或输入域Y的冬季图片生成器输出域X的夏季图片。我们来考虑考虑传统的GAN网络能否完成这项任务,示意图如下:

???域X的图片经生成器G不断生成图片G(x),而 D Y D_Y DY? 鉴别生成的图片和域Y中的图片,这样就构成了一个GAN网络,这样看似乎也可以完成任务,会将域X中的图片不断像域Y转换,但是呢,大家能否看出这里似乎还是存在着一些漏洞,如下图所示:

image-20220725114813626

???上图我们的确是将域X中图片转换成了域Y中冬季图片风格,但是你会发现转换后的图片和原始图片没有任何关系,即GAN网络只学到了把一张夏季图片传化为冬季图片,但至于转换后的冬季图片和原始夏季图片有没有关系没有学习到,这样的话这个网络肯定是不符合实际要求的。那么CycleGAN就提出了循环一致性网络,如下图所示:

image-20220725131900754

? ??现对上图做相关解释,首先我们先对相关字母做一定了解,如下表所示:

x x x域X中的图像数据
Y ^ {\rm{\hat Y}} Y^ x x x经生成器 G G G生成的图片域
x ^ {\rm{\hat x}} x^ Y ^ {\rm{\hat Y}} Y^ 中图片经生成器 F F F生成的数据
G G G生成器,用于将图片从域 X X X到域 Y Y Y生成
F F F生成器,用于将图片从域 Y Y Y到域 X X X生成
D Y D_Y DY?判别器,用于判别图片是来自域 Y Y Y还是 G ( x ) G(x) G(x)

???说明了这些字母后,我们来看上图:首先域 X X X中的数据 x x x经过生成器 G G G会变成 Y ^ {\rm{\hat Y}} Y^ 中的图片 y ^ {\rm{\hat y}} y^? ,即现在夏季的图片已经转换成冬季的图片,不过此时夏冬两季图片的相关性我们是不知的,可能很差,而我们期望夏冬两季的图片相关性强,即区别只会体现在季节的差异上。于是我们会将 Y ^ {\rm{\hat Y}} Y^ 中的图片 y ^ {\rm{\hat y}} y^? 再经过生成器 F F F变换回来,即将冬季图片再转换成夏季图片,结果记为 x ^ {\rm{\hat x}} x^ 。然后我们就设置损失让 x x x x ^ {\rm{\hat x}} x^ 尽可能一样,这样就能控制生成器G生成的冬季图片和原始夏季图片相关性很强了。上述循环一致性大致过程为: x → G ( x ) → F ( G ( x ) ) ≈ x ^ x \to G(x) \to F(G(x)) \approx \hat x xG(x)F(G(x))x^ ,即让 x x x x ^ {\rm{\hat x}} x^尽可能相似。

???上文介绍完了从域 X X X转域 Y Y Y的过程,那从域 X X X转域 Y Y Y是一样的,即尽可能让 y y y y ^ {\rm{\hat y}} y^? 相似 y → F ( y ) → G ( F ( y ) ) ≈ y ^ y \to F(y) \to G(F(y)) \approx \hat y yF(y)G(F(y))y^?,过程如下:

image-20220725141506141

???其实这样就把CycleGAN的核心思想都介绍完了,这里再贴上论文中关于这部分的一张完整的图供大家参考:

image-20220725141827484

?
?

CycleGAN损失函数

??其实介绍完理论部分,那么损失函数就很简单了,一共有三部分组成,如下表所示:【呜呜呜,这里编辑的markdown表格在网页中显示总是乱码,大家将就看一下图片吧🎃】

image.png#pic_center

??而总的损失为上述三部分之和,公式如下:

? L ( G , F , D X , D Y ) = L G A N ( G , D Y , X , Y ) + L G A N ( G , D X , Y , X ) + λ L c y c ( G , F ) L(G,F,{D_X},{D_Y}) = {L_{GAN}}(G,{D_Y},X,Y) + {L_{GAN}}(G,{D_X},Y,X) + \lambda {L_{cyc}}(G,F) L(G,F,DX?,DY?)=LGAN?(G,DY?,X,Y)+LGAN?(G,DX?,Y,X)+λLcyc?(G,F)

??其中 λ \lambda λ 表示循环一致损失所占比重,论文中设置 λ = 10 \lambda = 10 λ=10

?
?

CycleGAN图像夏冬转换案例

???实验论文中也给除了Github地址,连接如下:CycleGAN 🍁🍁🍁

???这里我就不带大家一点点的解读代码了,相信你阅读了我之前的文章看这个代码应该能大致了解,我之前几期做过一些代码的解读,但是我自己觉得描述并不算很清晰,有的想要表达的点也没有表述清楚,所以我觉得代码部分大家还是看视频讲解比较高效,但是不论怎样,阅读代码你一定要自己亲自调试调试,这样你会有很大的收获!!!

??这里我就放一张我运行的结果图片,从夏季转换到冬季,如下:

Snipaste_2022-07-24_23-28-59

??可以看出,变换的效果还是不错的。【注意:我只再Googleclab上训练了15个epoch就得动了这样的效果,大家可以增大epoch进行训练。】

?
?

论文下载

CycleGAN论文下载 🍁🍁🍁

?
?

参考连接

精读CycleGAN论文

生成式對抗網路 (Generative Adversarial Network, GAN) (四) – Cycle GAN

?
?
如若文章对你有所帮助,那就🛴🛴🛴

在这里插入图片描述

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-10-22 21:15:35  更:2022-10-22 21:18:22 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/25 20:19:37-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码