IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> Python实现Logistc回归分类(西瓜数据集、鸢尾花数据集)详解 -> 正文阅读

[人工智能]Python实现Logistc回归分类(西瓜数据集、鸢尾花数据集)详解

Logistic回归原理讲解

【声明】 笔者实验之前,参考了助教所提供的另一篇文章内容,自行又额外参考一篇CSDN中的相关文章,之后原理讲解将会基于此基础之上进行,引用其中部分内容进行讲解。
Logistic回归(LR):是一种常用的处理二分类问题的模型,二分类问题中,把结果y分成两个类,正类和负类。因变量y∈{0, 1},0是负类,1是正类。线性回归函数: f ( x ) = θ t x f(x) = \theta^tx f(x)=θtx的输出值在负无穷到正无穷的范围上,并不好区分是正类还是负类。因此引入非线性变换,把线性回归的输出值压缩到(0, 1)之间,Logistic回归就是通过使用Sigmoid函数,也称为逻辑函数(Logistic function) 进行非线性变换:
g ( z ) = 1 1 + e z g(z) = \frac{1}{1+e^z} g(z)=1+ez1?
其函数图像如下:
在这里插入图片描述
不难看出Sigmoid函数成像为“S形,它的取值在[0, 1]之间,在远离0的地方函数的值会很快接近0或者1,它的这个特性对于解决二分类问题十分重要。将线性回归函数带入Sigmoid函数得到 g ( θ ) = 1 1 + e θ t x g(\theta) = \frac{1}{1+e^ { \theta^tx} } g(θ)=1+eθtx1?

逻辑回归的损失函数

通常提到损失函数,我们不得不提到 代价函数(Cost Function)目标函数 (Object Function)

损失函数(Loss Function) 直接作用于单个样本,用来表达样本的误差

代价函数(Cost Function) 是整个样本集的平均误差,对所有损失函数值的平均

目标函数(Object Function) 是我们最终要优化的函数,也就是代价函数+正则化函数(经验风险+结构风险)

概况来讲,任何能够衡量模型预测出来的值 h ( θ ) h(\theta) h(θ) 与真实值 y 之间的差异的函数都可以叫做代价函数 C ( θ ) C(\theta) C(θ)如果有多个样本,则可以将所有代价函数的取值求均值,记做 J ( θ ) J(\theta) J(θ) 。在逻辑回归中,最常用的是代价函数是交叉熵(Cross Entropy)函数,此时 J ( θ ) 和 C ( θ ) [ c o s t ( θ ) ] J(\theta)和C(\theta)[cost(\theta)] J(θ)C(θ)[cost(θ)]如下:
c o s t ( θ ) = { ? l o g ( h θ ( x ) ) y = 1 ? l o g ( 1 ? h θ ( x ) ) y = 0 cost(\theta)=\begin{equation} \left\{ \begin{array}{lr} -log(h_\theta(x))&y =1 \\ -log(1-h_\theta(x))&y=0 \end{array} \right. \end{equation} cost(θ)={?log(hθ?(x))?log(1?hθ?(x))?y=1y=0???
J ( θ ) = 1 m ∑ i = 1 m [ ? y i l o g ( h θ ( x i ) ) ? ( 1 ? y i ) l o g ( 1 ? h θ ( x i ) ) ] J(\theta) = \frac{1}{m}\sum\limits^m_{i=1}[-y^{i}log(h_\theta(x^i))-(1-y^i)log(1-h_\theta(x^i))] J(θ)=m1?i=1m?[?yilog(hθ?(xi))?(1?yi)log(1?hθ?(xi))]
有人可能会问为什么log之前要加负号呢?回忆之前提到的Sigmod函数的值域,只落在(0,1)之间,log在此时都为负数,所以负号用于保证值输出为正值。

梯度下降

我们更新迭代参数 θ \theta θ通过梯度下降的办法,通过对 J ( θ ) J(\theta) J(θ)求导,意在不断寻求最小的损失函数值,优化模型
在这里插入图片描述
可得到
在这里插入图片描述
通过不断迭代即可更新学习参数

代码实现

西瓜数据集

实验的第一个部分是要求根据西瓜书上的西瓜数据集进行模型建立。具体其实只给了两个参数,分别是密度和含糖率,所以直接使用Logistic分类模型即可:

density = np.array([0.697, 0.774, 0.634, 0.608, 0.556, 0.403, 0.481, 0.437, 0.666,
                    0.243, 0.245, 0.343, 0.639, 0.657, 0.360, 0.593, 0.719]).reshape(-1, 1)

sugar_rate = np.array([0.460, 0.376, 0.264, 0.318, 0.215, 0.237, 0.149, 0.211, 0.091,
                       0.267, 0.057, 0.099, 0.161, 0.198, 0.370, 0.042, 0.103]).reshape(-1, 1)

在此我们先给出LogistcModel的初步定义:

class LogisticModel:
    def __init__(self, X, Y, alpha=1, mini=0.0001) -> None:
        self.x = X
        self.y = Y
        self.alpha = alpha#学习率
        self.mini = mini#迭代停止最小误差
        cnt = len(x[0])	#样本数量
        self.theta = np.array([[0.0] for i in range(cnt)])
        self.predict = [] #存放预测值

随后就是Sigmoid函数和损失函数的实现:

	def __sigmoid(x):
        return 1/(1 + np.exp(-x))

    def __loss(self, theta):
        # 计算损失值
        sum = 0.0
        for i in range(len(self.y)):
            if y[i][0] == 1:
                sum += - \
                    float(log(LogisticModel.__sigmoid(np.dot(x[i], theta))))
            else:
                sum += - \
                    float(log(1-LogisticModel.__sigmoid(np.dot(x[i], theta))))

        return sum/len(self.y)

之后是编写梯度计算与循环检查函数:

    def __gradient(self, theta):
        # 求取梯度
        sum = 0
        for i in range(len(self.y)):
            sum += (LogisticModel.__sigmoid(
                float(np.dot(x[i], theta))) - y[i][0]) * x[i]
        sum /= len(self.y)
        ans = self.alpha*sum.reshape(-1, 1)
       	return ans
       	
    def __check(self):
        # 检查是否达到迭代边界条件
        TempOld = LogisticModel.__loss(self, self.theta)
        Theta = LogisticModel.__gradient(self, self.theta)
        self.theta -= Theta  # 更新theta
        TempNew = LogisticModel.__loss(self, self.theta)
        result = abs((abs(TempNew)-abs(TempOld)))
        if result <= self.mini:
            return False
        return True

    def fit(self):
        # 迭代梯度下降的过程
        while(LogisticModel.__check(self)):
            pass

最后的步骤就是对模型的预测与结果的输出,这里输出采用的是混淆矩阵(Confusion Matrix)

    def predictSelf(self):
        # 模型预测
        for i in range(len(self.y)):
            if(LogisticModel.__sigmoid(np.dot(self.x[i], self.theta)) > 0.5):
                self.predict.append(1)
            else:
                self.predict.append(0)

    def show(self, labels_name):
        cm = (confusion_matrix(self.y.reshape(1, -1)[0], self.predict))
        # 展示模型结果
        print("accuracy:{:.2%}".format((cm[0][0]+cm[1][1])/(len(self.y))))
        print("presicion:{:.2%}".format(cm[0][0]/(cm[0][0]+cm[0][1])))
        print("recall:{:.2%}".format(cm[0][0]/(cm[0][0]+cm[1][0])))

        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]    # 归一化
        plt.imshow(cm, interpolation='nearest')    # 在特定的窗口上显示图像
        plt.title('WaterMelon')    # 图像标题
        plt.colorbar()
        num_local = np.array(range(len(labels_name)))
        plt.xticks(num_local, labels_name, rotation=90)    # 将标签印在x轴坐标上
        plt.yticks(num_local, labels_name)    # 将标签印在y轴坐标上
        plt.ylabel('True label')
        plt.xlabel('Predicted label')
        plt.show()

在这里插入图片描述

accuracy:82.35%
presicion:77.78%
recall:87.50%   

全代码

这里额外解释一下,主函数中的x我是将Sugar_rate与density 合并在一起,y中记录的是真实值的数据。而C起初我是打算用作线性的函数常数项,但是随后发现引入C的准确率并不是很高,各位可以自己下去自行添加尝试。

import numpy as np
from numpy import log
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
np.set_printoptions(suppress=True)  # 取消科学计数法输出


class LogisticModel:
    def __init__(self, X, Y, alpha=1, mini=0.0001) -> None:
        self.x = X
        self.y = Y
        self.alpha = alpha
        self.mini = mini
        cnt = len(x[0])
        self.theta = np.array([[0.0] for i in range(cnt)])
        self.predict = []

    def __sigmoid(x):
        return 1/(1 + np.exp(-x))

    def __loss(self, theta):
        # 计算损失值
        sum = 0.0
        for i in range(len(self.y)):
            if y[i][0] == 1:
                sum += - \
                    float(log(LogisticModel.__sigmoid(np.dot(x[i], theta))))
            else:
                sum += - \
                    float(log(1-LogisticModel.__sigmoid(np.dot(x[i], theta))))

        return sum/len(self.y)

    def __gradient(self, theta):
        # 求取梯度
        sum = 0
        for i in range(len(self.y)):
            sum += (LogisticModel.__sigmoid(
                float(np.dot(x[i], theta))) - y[i][0]) * x[i]
        sum /= len(self.y)
        ans = self.alpha*sum.reshape(-1, 1)
        # print(theta - ans)
        return ans

    def __check(self):
        # 检查是否达到迭代边界条件
        TempOld = LogisticModel.__loss(self, self.theta)
        Theta = LogisticModel.__gradient(self, self.theta)
        self.theta -= Theta  # 更新theta
        TempNew = LogisticModel.__loss(self, self.theta)
        result = abs((abs(TempNew)-abs(TempOld)))
        if result <= self.mini:
            return False
        return True

    def fit(self):
        # 迭代梯度下降的过程
        while(LogisticModel.__check(self)):
            pass

    def predictSelf(self):
        # 模型预测
        for i in range(len(self.y)):
            if(LogisticModel.__sigmoid(np.dot(self.x[i], self.theta)) > 0.5):
                self.predict.append(1)
            else:
                self.predict.append(0)

    def show(self, labels_name):
        cm = (confusion_matrix(self.y.reshape(1, -1)[0], self.predict))
        # 展示模型结果
        print("accuracy:{:.2%}".format((cm[0][0]+cm[1][1])/(len(self.y))))
        print("presicion:{:.2%}".format(cm[0][0]/(cm[0][0]+cm[0][1])))
        print("recall:{:.2%}".format(cm[0][0]/(cm[0][0]+cm[1][0])))

        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]    # 归一化
        plt.imshow(cm, interpolation='nearest')    # 在特定的窗口上显示图像
        plt.title('WaterMelon')    # 图像标题
        plt.colorbar()
        num_local = np.array(range(len(labels_name)))
        plt.xticks(num_local, labels_name, rotation=90)    # 将标签印在x轴坐标上
        plt.yticks(num_local, labels_name)    # 将标签印在y轴坐标上
        plt.ylabel('True label')
        plt.xlabel('Predicted label')
        plt.show()


density = np.array([0.697, 0.774, 0.634, 0.608, 0.556, 0.403, 0.481, 0.437, 0.666,
                    0.243, 0.245, 0.343, 0.639, 0.657, 0.360, 0.593, 0.719]).reshape(-1, 1)

sugar_rate = np.array([0.460, 0.376, 0.264, 0.318, 0.215, 0.237, 0.149, 0.211, 0.091,
                       0.267, 0.057, 0.099, 0.161, 0.198, 0.370, 0.042, 0.103]).reshape(-1, 1)
# 用于迭代Theta的常数项
C = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
              1, 1, 1, 1, 1, 1]).reshape(-1, 1)
#x = np.hstack((density, sugar_rate),C)
x = np.hstack((density, sugar_rate))
y = np.array([1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0,
              0, 0, 0, 0, 0, 0]).reshape(-1, 1)
Test = LogisticModel(x, y)
Test.fit()
Test.predictSelf()
labels_name = ["good", "bad"]
Test.show(labels_name)




鸢尾花(Iris)数据集

鸢尾花数据集是一个多分类的数据集,获取方法可以看这篇文章
对于多分类的样本,显然不能直接使用Logistic模型对齐分类,这里介绍一种可以将二分类模型用于进行多分类的方法——投票法(VotingClassifier),以鸢尾花数据集为例,总共提供了3种不同类型的花,那么我们可以将之两两组合,形成3个分类器,预测时三个分类器分别预测其种类对其投票,票数多的即为预测结果,如果票数一致则可以任选一个种类记录

A
B
A
AB
A
BC
CA

LogisticModel

我的思路是首先对于之前的模型进行改造,使之可以适应鸢尾花的分类,
主要改变的其实就是画图的部分,去除了计算召回率和精确率(因为要分别对3个分类器求,过于繁杂),其次就是把title和混淆矩阵转移到函数外计算,

    def show(cm, labels_name, title):
        print("accuracy:{:.2%}".format(
            (cm[0][0]+cm[1][1]+cm[2][2])/(np.sum(cm))))
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]    # 归一化
        plt.imshow(cm, interpolation='nearest')    # 在特定的窗口上显示图像
        plt.title(title)    # 图像标题
        plt.colorbar()
        num_local = np.array(range(len(labels_name)))
        plt.xticks(num_local, labels_name, rotation=90)    # 将标签印在x轴坐标上
        plt.yticks(num_local, labels_name)    # 将标签印在y轴坐标上
        plt.ylabel('True label')
        plt.xlabel('Predicted label')
        plt.show()

还有就是对于梯度下降的界定条件由0.0001降低了一个百分比到0.001,原因是之后在我计算时,发现对于其中的一个模型来说,原先的精度会需要迭代更多的次数,有可能是深陷局部最小值难以跳出,加之降低精度后最终预测结果也可以接受,故改之。其实也可以改良梯度下降算法,例如:动量梯度下降法(gradient descent with momentum) 大家可以自行尝试

class LogisticModel:
    def __init__(self, X, Y, alpha=1, mini=0.001) -> None:
        self.x = X
        self.y = Y
        self.alpha = alpha
        self.mini = mini
        cnt = len(self.x[0])
        self.theta = np.array([[0.0] for i in range(cnt)])
        self.predict = []

全代码

import numpy as np
from numpy import log
import matplotlib.pyplot as plt
np.set_printoptions(suppress=True)  # 取消科学计数法输出


class LogisticModel:
    def __init__(self, X, Y, alpha=1, mini=0.001) -> None:
        self.x = X
        self.y = Y
        self.alpha = alpha
        self.mini = mini
        cnt = len(self.x[0])
        self.theta = np.array([[0.0] for i in range(cnt)])
        self.predict = []

    def sigmoid(x):
        return 1/(1 + np.exp(-x))

    def __loss(self, theta):
        # 计算损失值
        sum = 0.0
        for i in range(len(self.y)):
            if self.y[i][0] == 1:
                sum += - \
                    float(log(LogisticModel.sigmoid(
                        np.dot(self.x[i], theta))))
            else:
                sum += - \
                    float(
                        log(1-LogisticModel.sigmoid(np.dot(self.x[i], theta))))

        return sum/len(self.y)

    def __gradient(self, theta):
        # 求取梯度
        sum = 0
        for i in range(len(self.y)):
            sum += (LogisticModel.sigmoid(
                float(np.dot(self.x[i], theta))) - self.y[i][0]) * self.x[i]
        sum /= len(self.y)
        ans = self.alpha*sum.reshape(-1, 1)
        # print(theta - ans)
        return ans

    def __check(self):
        # 检查是否达到迭代边界条件
        TempOld = LogisticModel.__loss(self, self.theta)
        Theta = LogisticModel.__gradient(self, self.theta)
        self.theta -= Theta  # 更新theta
        TempNew = LogisticModel.__loss(self, self.theta)
        result = abs((abs(TempNew)-abs(TempOld)))
        if result <= self.mini:
            return False
        return True

    def fit(self):
        # 迭代梯度下降的过程
        while(LogisticModel.__check(self)):
            pass

    def predictSelf(self):
        # 模型预测
        for i in range(len(self.y)):
            if(LogisticModel.sigmoid(np.dot(self.x[i], self.theta)) > 0.5):
                self.predict.append(1)
            else:
                self.predict.append(0)

    # def show_theta(self):
    #     print(self.theta)

    def show(cm, labels_name, title):
        print("accuracy:{:.2%}".format(
            (cm[0][0]+cm[1][1]+cm[2][2])/(np.sum(cm))))
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]    # 归一化
        plt.imshow(cm, interpolation='nearest')    # 在特定的窗口上显示图像
        plt.title(title)    # 图像标题
        plt.colorbar()
        num_local = np.array(range(len(labels_name)))
        plt.xticks(num_local, labels_name, rotation=90)    # 将标签印在x轴坐标上
        plt.yticks(num_local, labels_name)    # 将标签印在y轴坐标上
        plt.ylabel('True label')
        plt.xlabel('Predicted label')
        plt.show()

主函数实现

首先就是数据的读取和分类器的构建,这里我提供的标签训练值统一为前50位为1,后50位为0的列表,这是为了能够直接复用ModelLogistic类,回忆西瓜数据集时,我们正例标记为1,负例标记为0。这里相当于组合的前50类别标记为正,后50标记为负,因为鸢尾花的数据集十分规整,所以我们可以很轻易地将其分出3个类别。

Labels_name = ['SepalLength', 'SepalWidth',
               'PetalLength', 'PetalWidth', 'Species']
# 读取表格数据
iris = pd.read_csv("D:\Code\python\Iris.csv", header=0, names=Labels_name)
x = np.hstack((np.array(iris[u'SepalLength']).reshape(-1, 1), 
               np.array(iris[u'SepalWidth']).reshape(-1, 1),
               np.array(iris[u'PetalLength']).reshape(-1, 1),
               np.array(iris[u'PetalWidth']).reshape(-1, 1)))

Y = np.hstack([[1]*50, [0]*50]).reshape(-1, 1)
x_SVer = np.vstack([x[0:50], x[50:100]])
x_VerVir = np.vstack([x[50:100], x[100:150]])
x_VirS = np.vstack([x[100:150], x[0:50]])

ModelA = LogisticModel(x_SVer, Y)
ModelB = LogisticModel(x_VerVir, Y)
ModelC = LogisticModel(x_VirS, Y)

ModelA.fit()
ModelB.fit()
ModelC.fit()

随后是编写投票器预测模型,免不了大量if语句:

def predict(a, b, c, test, pre):
    for i in range(len(test)):
        # 记票器
        list = [0, 0, 0]
        if(LogisticModel.sigmoid(np.dot(test[i], a.theta))) > 0.5:
            list[0] += 1
        else:
            list[1] += 1
        if(LogisticModel.sigmoid(np.dot(test[i], b.theta))) > 0.5:
            list[1] += 1
        else:
            list[2] += 1
        if(LogisticModel.sigmoid(np.dot(test[i], c.theta))) > 0.5:
            list[2] += 1
        else:
            list[0] += 1
        if(list[0] ^ list[1] ^ list[2] == 1):
            pre.append("Iris-versicolor")
        else:
            if(list.index(2) == 0):
                pre.append("Iris-setosa")
            elif(list.index(2) == 1):
                pre.append("Iris-versicolor")
            elif(list.index(2) == 2):
                pre.append("Iris-virginica")

这里的测试集需要我们自己划分,调用sklearn中的 train_test_split函数进行划分:

from sklearn.model_selection import train_test_split
y = np.array(iris[u'Species']).reshape(-1, 1)  # 标签
x_train, x_test, y_train, y_test = train_test_split(
    x, y, test_size=0.6)  # 划分数据集

最后一步,预测+输出最终结果:

pre = []  # 存储预测结果
predict(ModelA, ModelB, ModelC, x_test, pre)
cm = (confusion_matrix(y_test, np.array(pre).reshape(-1, 1)))
print(cm)
title = "Iris Prediction"
LogisticModel.show(cm, ['setosa', 'versicolor', 'virginica'], title)

全代码

from LogisticModel import LogisticModel
import pandas as pd
import numpy as np
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
np.set_printoptions(suppress=True)  # 取消科学计数法输出


def predict(a, b, c, test, pre):
    for i in range(len(test)):
        # 记票器
        list = [0, 0, 0]
        if(LogisticModel.sigmoid(np.dot(test[i], a.theta))) > 0.5:
            list[0] += 1
        else:
            list[1] += 1
        if(LogisticModel.sigmoid(np.dot(test[i], b.theta))) > 0.5:
            list[1] += 1
        else:
            list[2] += 1
        if(LogisticModel.sigmoid(np.dot(test[i], c.theta))) > 0.5:
            list[2] += 1
        else:
            list[0] += 1
        if(list[0] ^ list[1] ^ list[2] == 1):
            pre.append("Iris-versicolor")
        else:
            if(list.index(2) == 0):
                pre.append("Iris-setosa")
            elif(list.index(2) == 1):
                pre.append("Iris-versicolor")
            elif(list.index(2) == 2):
                pre.append("Iris-virginica")


Labels_name = ['SepalLength', 'SepalWidth',
               'PetalLength', 'PetalWidth', 'Species']
# 读取表格数据
iris = pd.read_csv("D:\Code\python\Iris.csv", header=0, names=Labels_name)
x = np.hstack((np.array(iris[u'SepalLength']).reshape(-1, 1),
               np.array(iris[u'SepalWidth']).reshape(-1, 1),
               np.array(iris[u'PetalLength']).reshape(-1, 1),
               np.array(iris[u'PetalWidth']).reshape(-1, 1)))

Y = np.hstack([[1]*50, [0]*50]).reshape(-1, 1)
x_SVer = np.vstack([x[0:50], x[50:100]])
x_VerVir = np.vstack([x[50:100], x[100:150]])
x_VirS = np.vstack([x[100:150], x[0:50]])

ModelA = LogisticModel(x_SVer, Y)
ModelB = LogisticModel(x_VerVir, Y)
ModelC = LogisticModel(x_VirS, Y)

ModelA.fit()
ModelB.fit()
ModelC.fit()


y = np.array(iris[u'Species']).reshape(-1, 1)  # 标签
x_train, x_test, y_train, y_test = train_test_split(
    x, y, test_size=0.6)  # 划分数据集

pre = []  # 存储预测结果
predict(ModelA, ModelB, ModelC, x_test, pre)
cm = (confusion_matrix(y_test, np.array(pre).reshape(-1, 1)))
print(cm)
title = "Iris Prediction"
LogisticModel.show(cm, ['setosa', 'versicolor', 'virginica'], title)

在这里插入图片描述
在这里插入图片描述
最终的结果应该是会在95%~99%之间波动

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-10-22 21:15:35  更:2022-10-22 21:19:27 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/25 20:18:02-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码