| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> 论文超详细精读|五千字:ResGCN/DenseGCN -> 正文阅读 |
|
[人工智能]论文超详细精读|五千字:ResGCN/DenseGCN |
文章目录前言笔者从人工智能小白的角度,力求能够从原文中解析出最高效率的知识。
总览首先,看完标题,摘要和结论,我了解到了以下信息: 一、 Introduction背景1.CNN成功的一个关键原因是它能够设计和可靠地训练非常深入的CNN模型。相比之下,如何恰当地训练深度GCN体系结构尚不清楚。 主要贡献1.将残差(residual)/密集(dense)连接和扩张(dilated )卷积应用于GCNs。
二、Related Work无法系统地、可靠地处理这些非欧几里和距离数据。为了克服cnn的缺点,GCNs为非欧氏数据处理提供了非常合适的解决方案,这大大增加了人们对使用GCNs进行各种应用的兴趣。 目前主要应用场景1.社交网络:图表表示个人之间基于共同利益/关系的联系。这些联系是非欧氏的,高度不规则。GCNs有助于更好地估计社交网络图顶点之间的边缘强度,从而导致个体之间更准确的连接。 目前困难与解决主要困难:梯度消失和感受野有限。 解决: 三、Methodology3.1 Representation Learning on Graphs(图的表示学习)1.GCN框架函数
2.GCN具有固定的图结构,并且只在每次迭代中更新顶点特征。与具有固定图结构的GCNs相比,动态图卷积(允许图结构在每一层发生变化)可以学习更好的图表示。
3.当考虑更深层的GCNs时,动态改变GCNs中的邻居有助于缓解过平滑问题,并导致有效更大的感受野。 3.2 Residual Learning for GCNs(GCN的残差学习)扩展深层架构的困难:堆叠多层图卷积会导致反向传播的高度复杂性。因此,大多数最先进的GCN模型通常不超过3层深。 实现:在原来的图学习框架中,学习了底层映射
F
F
F,它将图作为输入,输出一个新的图表示。 3.3 Dense Connections in GCNs (GCN的密集连接)1.GCNS DenseNet中的密集连接:为了利用层之间的密集连接,从而改善了网络中的信息流,并使层之间的特征能够有效地重用。本文将类似的思想应用于GCN,以便利用来自不同GCN层的信息流。 3.4 Dilated Aggregation in GCNs(GCN的膨胀聚集)有学者提出将膨胀卷积作为对密集预测任务(例如,语义图像分割)应用连续池化层的替代方案。实验表明,使用膨胀卷积聚集多尺度上下文信息可以显著提高语义分割任务的准确性。原因是扩张可以在不损失分辨率的情况下扩大感受野。作者认为,扩张也有助于加深GCNS的感受野。因此,作者将膨胀聚集引入GCNS。作者使用一个膨胀的 k ? N N k-NN k?NN 在每一个GCN层之后寻找膨胀的邻域,并构造一个膨胀的图。特别地,对于以扩张 k ? N N k-NN k?NN 和 d d d 为扩张率的输入图 G = ( V , E ) \mathcal{G}=(\mathcal{V},\mathcal{E}) G=(V,E) ,扩张 k ? N N k-NN k?NN 通过跳过每 d d d 个邻域返回 k × d k×d k×d 邻域内的 k k k 个最近邻域。根据预定义的距离度量确定最近的邻居。实验中,使用当前层的特征空间中的 l 2 \mathcal{l}_2 l2? 距离。
四、Experiments提出了ResGCN和DenseGCN来处理GCNS的消失梯度问题。为了扩大感受野,作者为GCNS定义了一种扩张的图卷积算子。为了评估框架,作者在大规模点云分割任务上进行了广泛的实验,证明了其方法显著地提高了性能。此外,作者还进行了一项全面的消融研究,以显示框架的不同部分的影响。 五、Conclusion and Future Work1.本文研究:如何将经过验证的有用概念(residual连接、dense连接和dilated卷积)从CNN引入GCNS,并回答了这个问题:如何使GCNS变得更深? |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 | -2024/11/25 21:46:58- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |