| ----- ----- - ------- --- 主要是先进行分析,然后--读取数据后 构造卷积网络模型 得到最后的结果 import torchimport numpy as np
 import torch.nn as nn
 import scipy.io as sio
 from torch.utils.data import Dataset, DataLoader
 from sklearn.preprocessing import maxabs_scale
 class CWRU_DATA(Dataset):
 def __init__(self, data_num=100, data_len=1024):  # not overlapped
 self.data, self.label = self.prepare_data(num=data_num, length=data_len)  # (4, 100, 1024)
     def __len__(self):return len(self.label)
     def data_preprocess(self, x):x = x.astype(np.float32)  # shape: (N,)
 x = maxabs_scale(x)
 return x
     def prepare_data(self, num, length):NC = r"1./normal_0_97.mat"
 IF = r"1/12k_Drive_End_IR007_0_105.mat"
 OF
 |