| |
|
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
| -> 人工智能 -> Python机器学习教程—超参数的调整与可视化 -> 正文阅读 |
|
|
[人工智能]Python机器学习教程—超参数的调整与可视化 |
|
目录 前言机器学习模型要想能够很好的应用,必须要能够学会调整超参数,在训练中找到最适合的超参数,本文以前文曾讲过的线性回归为例,来进行学习超参数的调整与作图的实现,即可视化。 方法一:for循环观察超参数变化首先训练一个线性回归模型,是一个很简单的关于员工工龄与对应薪水之间关系的预测,注意for循环中的两行代码,即输出w0,w1和loss的变化过程,那么便可通过观察三个参数的变化来动态调整这循环迭代次数times和学习率lrate。
输出结果如下图,可观察到随着w0和w1的变化,损失值loss在变小,这说明目前的超参数设置是可以的,但我们还可以继续对循环迭代次数times和学习率lrate进行调整,比如观察到次数不需要很多就能达到理想效果便可以减少迭代次数,而感觉损失值还比较大,那也可以增加迭代次数看看是否能更进一步。
类似的可以对学习率也进行调整,学习率代表的是步长,学习率调大可能会加速损失值的下降,这利于减少迭代次数,但有可能步长设置过大导致损失值下降后反而又上升了,也就是迈过了最低点,就错过了极值点。?比如我们将学习率lrate调整至0.3,结果如下,代表着步长太大,loss值不降反而上升。
?当然也可以绘制出样本点回归线,通过图上观察大致的拟合效果,只是这样可能不太精确。
?输出结果如下图
方法二:超参数的可视化在实际一个业务场景的应用中,要相对超参数进行设置,最好的方法是可视化。即x轴代表迭代次数,y轴代表随着迭代次数的变化,w0,w1和loss值都会怎么变化,我们希望看到怎样的变化趋势,就可以根据图像去调整超参数lrate和times。
输出的可视化结果如下图,可观察到在设定好学习率的情况下,损失值是逐渐下降的。
而如果我们将学习率lrate设置为0.5,再循环个100轮,便能发现损失值是后面在飞速上升,这就是典型的梯度爆炸,就不符合我们的预期,便需要对参数进行调整
? ? |
|
|
|
|
| 上一篇文章 下一篇文章 查看所有文章 |
|
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
| 360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年11日历 | -2025/11/29 3:28:11- |
|
| 网站联系: qq:121756557 email:121756557@qq.com IT数码 |