IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> OpenCV----MonoDepthv2单目深度估计ONNX推理 -> 正文阅读

[人工智能]OpenCV----MonoDepthv2单目深度估计ONNX推理

题目要求:学习了解单目深度估计模型MonoDepthv2,根据python源码集成到现有ONNX系列模型中。
MonoDepthv2 论文:Digging Into Self-Supervised Monocular Depth Estimation
MonoDepthv2 源码:Monodepth2 GitHub

分析:
1)了解MonoDepthv2的基本原理和代码理解
2)将模型转化为更加方便高效的ONNX模型并在opencv中完成推理过程(并验证)

  • 结果展示:
    在这里插入图片描述
  • Pytorch转ONNX模型
  1. 合并Encoder和Decoder为一个模型
	import matplotlib as mpl
	import matplotlib.cm as cm
	
	import torch
	import torch.nn as nn
	import torchvision
	from torchvision import transforms, datasets
	
	import networks
	from layers import disp_to_depth
	from utils import download_model_if_doesnt_exist
	from evaluate_depth import STEREO_SCALE_FACTOR
	
	from collections import OrderedDict
	from layers import *
	import cv2
	
	class Encoder_Decoder(nn.Module):
	    def __init__(self, encoder, decoder):
	        super(Encoder_Decoder, self).__init__()
	
	        self.encoder = encoder
	
	        self.depth_decoder = decoder
	
	    def forward(self, x):
	        features = self.encoder(x)
	        outputs = self.depth_decoder(features)
	        return outputs

  1. Pytorch权重转ONNX权重
	from __future__ import absolute_import, division, print_function
	from ctypes import resize
	
	import os
	import sys
	import glob
	import argparse
	import numpy as np
	import PIL.Image as pil
	import matplotlib as mpl
	import matplotlib.cm as cm
	
	import torch
	import torchvision
	from torchvision import transforms, datasets
	
	import networks
	from layers import disp_to_depth
	from utils import download_model_if_doesnt_exist
	from evaluate_depth import STEREO_SCALE_FACTOR
	from combine_model import Encoder_Decoder
	
	import onnx
	import onnxruntime as ort
	import  cv2
	
	def parse_args():
	    parser = argparse.ArgumentParser(
	        description='Simple testing funtion for Monodepthv2 models.')
	
	    parser.add_argument('--image_path', type=str, default='assets/test_image.jpg',
	                        help='path to a test image or folder of images')
	    parser.add_argument('--model_name', type=str, default='mono_640x192',
	                        help='name of a pretrained model to use',
	                        choices=[
	                            "mono_640x192",
	                            "stereo_640x192",
	                            "mono+stereo_640x192",
	                            "mono_no_pt_640x192",
	                            "stereo_no_pt_640x192",
	                            "mono+stereo_no_pt_640x192",
	                            "mono_1024x320",
	                            "stereo_1024x320",
	                            "mono+stereo_1024x320"])
	    parser.add_argument('--ext', type=str,
	                        help='image extension to search for in folder', default="jpg")
	    parser.add_argument("--no_cuda",
	                        help='if set, disables CUDA',
	                        action='store_true')
	    parser.add_argument("--pred_metric_depth",
	                        help='if set, predicts metric depth instead of disparity. (This only '
	                             'makes sense for stereo-trained KITTI models).',
	                        action='store_true')
	
	    return parser.parse_args()
	
	
	def test_simple(args):
	    """Function to predict for a single image or folder of images
	    """
	    assert args.model_name is not None, \
	        "You must specify the --model_name parameter; see README.md for an example"
	
	    # if torch.cuda.is_available() and not args.no_cuda:
	    #     device = torch.device("cuda")
	    # else:
	    #     device = torch.device("cpu")
	    device = torch.device("cpu")
	    if args.pred_metric_depth and "stereo" not in args.model_name:
	        print("Warning: The --pred_metric_depth flag only makes sense for stereo-trained KITTI "
	              "models. For mono-trained models, output depths will not in metric space.")
	
	    download_model_if_doesnt_exist(args.model_name)
	    model_path = os.path.join("models", args.model_name)
	    print("-> Loading model from ", model_path)
	    encoder_path = os.path.join(model_path, "encoder.pth")
	    depth_decoder_path = os.path.join(model_path, "depth.pth")
	
	    # LOADING PRETRAINED MODEL
	    print("   Loading pretrained encoder")
	    encoder = networks.ResnetEncoder(18, False)
	    loaded_dict_enc = torch.load(encoder_path, map_location=device)
	
	    # extract the height and width of image that this model was trained with
	    feed_height = loaded_dict_enc['height']
	    feed_width = loaded_dict_enc['width']
	    filtered_dict_enc = {k: v for k, v in loaded_dict_enc.items() if k in encoder.state_dict()}
	    encoder.load_state_dict(filtered_dict_enc)
	    encoder.to(device)
	    encoder.eval()
	
	    print("   Loading pretrained decoder")
	    depth_decoder = networks.DepthDecoder(
	        num_ch_enc=encoder.num_ch_enc, scales=range(4))
	
	    loaded_dict = torch.load(depth_decoder_path, map_location=device)
	    depth_decoder.load_state_dict(loaded_dict)
	
	    depth_decoder.to(device)
	    depth_decoder.eval()
	
	    # FINDING INPUT IMAGES
	    if os.path.isfile(args.image_path):
	        # Only testing on a single image
	        paths = [args.image_path]
	        output_directory = os.path.dirname(args.image_path)
	    elif os.path.isdir(args.image_path):
	        # Searching folder for images
	        paths = glob.glob(os.path.join(args.image_path, '*.{}'.format(args.ext)))
	        output_directory = args.image_path
	    else:
	        raise Exception("Can not find args.image_path: {}".format(args.image_path))
	
	    print("-> Predicting on {:d} test images".format(len(paths)))
	
	    # PREDICTING ON EACH IMAGE IN TURN
	    with torch.no_grad():
	        for idx, image_path in enumerate(paths):
	
	            if image_path.endswith("_disp.jpg"):
	                # don't try to predict disparity for a disparity image!
	                continue
	
	            # Load image and preprocess
	            input_image = pil.open(image_path).convert('RGB')
	            original_width, original_height = input_image.size
	            input_image = input_image.resize((feed_width, feed_height), pil.LANCZOS)
	            input_image = transforms.ToTensor()(input_image).unsqueeze(0)
	
	            # PREDICTION
	            input_image = input_image.to(device)
	            # features = encoder(input_image)
	            # outputs = depth_decoder(features)
	
	            model = Encoder_Decoder(encoder=encoder, decoder=depth_decoder)
	            
	            model.eval()
	            outputs = model(input_image)
	
	            # disp = outputs[("disp", 0)]
	            disp = outputs
	            print('disp: ', disp.shape)
	            disp_ = disp.squeeze().cpu().numpy()
	            cv2.imwrite('disp_ori.png',disp_*255)
	            disp_resized = torch.nn.functional.interpolate(
	                disp, (original_height, original_width), mode="bilinear", align_corners=False)
	                
	            # Saving colormapped depth image
	            disp_resized_np = disp_resized.squeeze().cpu().numpy()
	            vmax = np.percentile(disp_resized_np, 95)
	            normalizer = mpl.colors.Normalize(vmin=disp_resized_np.min(), vmax=vmax)
	            mapper = cm.ScalarMappable(norm=normalizer, cmap='magma')
	            colormapped_im = (mapper.to_rgba(disp_resized_np)[:, :, :3] * 255).astype(np.uint8)
	            im = pil.fromarray(colormapped_im)
	
	            name_dest_im = os.path.join(output_directory, "{}_disp.jpeg".format(output_name))
	            im.save(name_dest_im)
	
	            print(" Processed {:d} of {:d} images - saved predictions to:".format(
	                idx + 1, len(paths)))
	            print("   - {}".format(name_dest_im))
	            # print("   - {}".format(name_dest_npy))
	
	    print('-> Done!')
	    x = torch.rand(1,3,192,640)
	    input_names = ['input']
	    output_names = ['output']
	    torch.onnx.export(model, x, 'mono.onnx',input_names=input_names, output_names=output_names,opset_version=11, verbose='True')
	
	def onnx_inference(): 
	    img = cv2.imread("assets/test_image.jpg")
	    print(img.shape)
	    h, w, _ = img.shape
		
		## opencv test
	    blobImage = cv2.dnn.blobFromImage(img, 1.0 / 255.0, (640, 192), None, True, False)
	    net = cv2.dnn.readNet('mono.onnx')
	    outNames = net.getUnconnectedOutLayersNames()
	    net.setInput(blobImage)
	    outs = net.forward(outNames)
	    print('cv outs: ', outs[0].shape)
	    outs = np.squeeze(outs, axis=(0,1))
	    outs = outs * 255.0
	    outs =outs.transpose((1,2,0)).astype(np.uint8)
	    disp_resized_np = cv2.resize(outs,(640,192))
	    cv2.imwrite('disp_cv.png',disp_resized_np)
	
		## onnxruntime test 
	    model = onnx.load('mono.onnx')
	    onnx.checker.check_model(model)
	    session = ort.InferenceSession('mono.onnx')
	    img = cv2.resize(img, (640, 192))
	    img = np.asarray(img) / 255.0
	    img = img[np.newaxis, :].astype(np.float32)
	
	    input_image = img.transpose((0,3,1,2))
	    outs = session.run(None, input_feed={'input':input_image})
	    outs = np.squeeze(outs, axis=(0,1))
	    outs = outs * 255.0
	    outs =outs.transpose((1,2,0)).astype(np.uint8)
	    disp_resized_np = cv2.resize(outs,(640,192))
	    cv2.imwrite('disp.png',disp_resized_np)
	    outs = cv2.applyColorMap(outs,colormap=cv2.COLORMAP_SUMMER)
	    cv2.imwrite('disp_color.png', outs)
	
	if __name__ == '__main__':
	    args = parse_args()
	    test_simple(args)
	    onnx_inference()

  • Opencv Cmodel
#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
#include <iostream>
#include <fstream>

using namespace cv;
using namespace dnn;
using namespace std;

class baseDepth
{
public:
	baseDepth(int h, int w, const string& model_path = "model/mono.onnx") {
		this->inHeight = h;
		this->inWidth = w;
		cout << "start" << endl;
		this->net = readNetFromONNX(model_path);
		cout << "end" << endl;
	};
	Mat depth(Mat& frame);
	Mat viewer(vector<Mat> imgs, double alpha=0.80);

private:
	Net net;
	int inWidth;
	int inHeight;
};

Mat baseDepth::depth(Mat& frame) {
	int ori_h = frame.size[0];
	int ori_w = frame.size[1];
	cout << "ori: " << ori_h << " , " << ori_w << endl;
	Mat blobImage = blobFromImage(frame, 1.0 / 255.0, Size(this->inWidth, this->inHeight), Scalar(0, 0, 0), true, false);

	this->net.setInput(blobImage);
	cout << "read model" << endl;
	vector<Mat> scores;
	this->net.forward(scores, this->net.getUnconnectedOutLayersNames());
	int channel = scores[0].size[1];
	int h = scores[0].size[2];
	int w = scores[0].size[3];
	cout << "c: " << channel << " , h: " << h << " , w: " << w << endl;
	Mat depthMap(scores[0].size[2], scores[0].size[3], CV_32F, scores[0].ptr<float>(0, 0));
	cout << depthMap.size() << endl;
	depthMap *= 255.0;
	depthMap.convertTo(depthMap, CV_8UC1);
	resize(depthMap, depthMap, Size(ori_w, ori_h));
	applyColorMap(depthMap, depthMap, COLORMAP_MAGMA);
	imwrite("inference/depth_color.png", depthMap);
	return depthMap;
}

Mat baseDepth::viewer(vector<Mat> imgs, double alpha){
    Size imgOriSize = imgs[0].size();
	Size imgStdSize(imgOriSize.width * alpha, imgOriSize.height * alpha);

    Mat imgStd;
	int delta_h = 2, delta_w = 2;
    Mat imgWindow(imgStdSize.height+2*delta_h, imgStdSize.width*2+3*delta_w, imgs[0].type());
	resize(imgs[0], imgStd, imgStdSize, alpha, alpha, INTER_LINEAR);
	imgStd.copyTo(imgWindow(Rect(Point2i(delta_w, delta_h), imgStdSize)));
	resize(imgs[1], imgStd, imgStdSize, alpha, alpha, INTER_LINEAR);
	imgStd.copyTo(imgWindow(Rect(Point2i(imgStdSize.width+2*delta_w, delta_h), imgStdSize)));
	return imgWindow;
}

// model test
// int main(int argc, char** argv) {
// 	Mat frame = imread("inference/car.jpg", 1);
// 	if (frame.empty()) {
// 		printf("could not load image...\n");
// 		return -1;
// 	}
// 	int h = 192, w = 640;
// 	baseDepth net(h, w);
// 	net.depth(frame);
// 	return 0;
// }
...
if(config.model_name == "monodepth"){
		int h = 192, w = 640;
		baseDepth model(h, w);
		Mat depthMap = model.depth(srcimg);

		static const string kWinName = "Deep learning Mono depth estimation in OpenCV";
		namedWindow(kWinName, WINDOW_NORMAL);
		Mat res = model.viewer({srcimg, depthMap}, 0.90);
		imshow(kWinName, res);
		waitKey(0);
		destroyAllWindows();
}
  • 小结
    转换过程主要遇到的问题:
    1)MonoDepth模型较丰富,内容上涉及单目和双目估计,模型结构上又分为Encoder和Decoder两部分,转ONNX时需要合并成一个模型测试;
    2)MonoDepth的Decoder部分需要输入多个特征层,而ONNX forward通常只支持单个输入,因此合并模型只forward了第一个特征层(实际也只用到了第一个特征层);
    3)PIL、matplotlib、cv2对图像的排列顺序不尽相同,可能存在ONNX转换成功而结果很奇怪,此时需要多定位图像的读取和存储方式的差异;
    4)深度估计只看深度结果图很难了解细节,需要跟原图放一起对比才能能清楚地理解深度,在输出时尽量保持在一起展示,添加颜色渲染,以提高辨识度。
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-10-31 11:56:46  更:2022-10-31 12:01:50 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 -2024/12/28 3:18:58-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码
数据统计