题目要求:学习了解单目深度估计模型MonoDepthv2,根据python源码集成到现有ONNX系列模型中。 MonoDepthv2 论文:Digging Into Self-Supervised Monocular Depth Estimation MonoDepthv2 源码:Monodepth2 GitHub
分析: 1)了解MonoDepthv2的基本原理和代码理解 2)将模型转化为更加方便高效的ONNX模型并在opencv中完成推理过程(并验证)
- 结果展示:
- Pytorch转ONNX模型
- 合并Encoder和Decoder为一个模型
import matplotlib as mpl
import matplotlib.cm as cm
import torch
import torch.nn as nn
import torchvision
from torchvision import transforms, datasets
import networks
from layers import disp_to_depth
from utils import download_model_if_doesnt_exist
from evaluate_depth import STEREO_SCALE_FACTOR
from collections import OrderedDict
from layers import *
import cv2
class Encoder_Decoder(nn.Module):
def __init__(self, encoder, decoder):
super(Encoder_Decoder, self).__init__()
self.encoder = encoder
self.depth_decoder = decoder
def forward(self, x):
features = self.encoder(x)
outputs = self.depth_decoder(features)
return outputs
- Pytorch权重转ONNX权重
from __future__ import absolute_import, division, print_function
from ctypes import resize
import os
import sys
import glob
import argparse
import numpy as np
import PIL.Image as pil
import matplotlib as mpl
import matplotlib.cm as cm
import torch
import torchvision
from torchvision import transforms, datasets
import networks
from layers import disp_to_depth
from utils import download_model_if_doesnt_exist
from evaluate_depth import STEREO_SCALE_FACTOR
from combine_model import Encoder_Decoder
import onnx
import onnxruntime as ort
import cv2
def parse_args():
parser = argparse.ArgumentParser(
description='Simple testing funtion for Monodepthv2 models.')
parser.add_argument('--image_path', type=str, default='assets/test_image.jpg',
help='path to a test image or folder of images')
parser.add_argument('--model_name', type=str, default='mono_640x192',
help='name of a pretrained model to use',
choices=[
"mono_640x192",
"stereo_640x192",
"mono+stereo_640x192",
"mono_no_pt_640x192",
"stereo_no_pt_640x192",
"mono+stereo_no_pt_640x192",
"mono_1024x320",
"stereo_1024x320",
"mono+stereo_1024x320"])
parser.add_argument('--ext', type=str,
help='image extension to search for in folder', default="jpg")
parser.add_argument("--no_cuda",
help='if set, disables CUDA',
action='store_true')
parser.add_argument("--pred_metric_depth",
help='if set, predicts metric depth instead of disparity. (This only '
'makes sense for stereo-trained KITTI models).',
action='store_true')
return parser.parse_args()
def test_simple(args):
"""Function to predict for a single image or folder of images
"""
assert args.model_name is not None, \
"You must specify the --model_name parameter; see README.md for an example"
device = torch.device("cpu")
if args.pred_metric_depth and "stereo" not in args.model_name:
print("Warning: The --pred_metric_depth flag only makes sense for stereo-trained KITTI "
"models. For mono-trained models, output depths will not in metric space.")
download_model_if_doesnt_exist(args.model_name)
model_path = os.path.join("models", args.model_name)
print("-> Loading model from ", model_path)
encoder_path = os.path.join(model_path, "encoder.pth")
depth_decoder_path = os.path.join(model_path, "depth.pth")
print(" Loading pretrained encoder")
encoder = networks.ResnetEncoder(18, False)
loaded_dict_enc = torch.load(encoder_path, map_location=device)
feed_height = loaded_dict_enc['height']
feed_width = loaded_dict_enc['width']
filtered_dict_enc = {k: v for k, v in loaded_dict_enc.items() if k in encoder.state_dict()}
encoder.load_state_dict(filtered_dict_enc)
encoder.to(device)
encoder.eval()
print(" Loading pretrained decoder")
depth_decoder = networks.DepthDecoder(
num_ch_enc=encoder.num_ch_enc, scales=range(4))
loaded_dict = torch.load(depth_decoder_path, map_location=device)
depth_decoder.load_state_dict(loaded_dict)
depth_decoder.to(device)
depth_decoder.eval()
if os.path.isfile(args.image_path):
paths = [args.image_path]
output_directory = os.path.dirname(args.image_path)
elif os.path.isdir(args.image_path):
paths = glob.glob(os.path.join(args.image_path, '*.{}'.format(args.ext)))
output_directory = args.image_path
else:
raise Exception("Can not find args.image_path: {}".format(args.image_path))
print("-> Predicting on {:d} test images".format(len(paths)))
with torch.no_grad():
for idx, image_path in enumerate(paths):
if image_path.endswith("_disp.jpg"):
continue
input_image = pil.open(image_path).convert('RGB')
original_width, original_height = input_image.size
input_image = input_image.resize((feed_width, feed_height), pil.LANCZOS)
input_image = transforms.ToTensor()(input_image).unsqueeze(0)
input_image = input_image.to(device)
model = Encoder_Decoder(encoder=encoder, decoder=depth_decoder)
model.eval()
outputs = model(input_image)
disp = outputs
print('disp: ', disp.shape)
disp_ = disp.squeeze().cpu().numpy()
cv2.imwrite('disp_ori.png',disp_*255)
disp_resized = torch.nn.functional.interpolate(
disp, (original_height, original_width), mode="bilinear", align_corners=False)
disp_resized_np = disp_resized.squeeze().cpu().numpy()
vmax = np.percentile(disp_resized_np, 95)
normalizer = mpl.colors.Normalize(vmin=disp_resized_np.min(), vmax=vmax)
mapper = cm.ScalarMappable(norm=normalizer, cmap='magma')
colormapped_im = (mapper.to_rgba(disp_resized_np)[:, :, :3] * 255).astype(np.uint8)
im = pil.fromarray(colormapped_im)
name_dest_im = os.path.join(output_directory, "{}_disp.jpeg".format(output_name))
im.save(name_dest_im)
print(" Processed {:d} of {:d} images - saved predictions to:".format(
idx + 1, len(paths)))
print(" - {}".format(name_dest_im))
print('-> Done!')
x = torch.rand(1,3,192,640)
input_names = ['input']
output_names = ['output']
torch.onnx.export(model, x, 'mono.onnx',input_names=input_names, output_names=output_names,opset_version=11, verbose='True')
def onnx_inference():
img = cv2.imread("assets/test_image.jpg")
print(img.shape)
h, w, _ = img.shape
blobImage = cv2.dnn.blobFromImage(img, 1.0 / 255.0, (640, 192), None, True, False)
net = cv2.dnn.readNet('mono.onnx')
outNames = net.getUnconnectedOutLayersNames()
net.setInput(blobImage)
outs = net.forward(outNames)
print('cv outs: ', outs[0].shape)
outs = np.squeeze(outs, axis=(0,1))
outs = outs * 255.0
outs =outs.transpose((1,2,0)).astype(np.uint8)
disp_resized_np = cv2.resize(outs,(640,192))
cv2.imwrite('disp_cv.png',disp_resized_np)
model = onnx.load('mono.onnx')
onnx.checker.check_model(model)
session = ort.InferenceSession('mono.onnx')
img = cv2.resize(img, (640, 192))
img = np.asarray(img) / 255.0
img = img[np.newaxis, :].astype(np.float32)
input_image = img.transpose((0,3,1,2))
outs = session.run(None, input_feed={'input':input_image})
outs = np.squeeze(outs, axis=(0,1))
outs = outs * 255.0
outs =outs.transpose((1,2,0)).astype(np.uint8)
disp_resized_np = cv2.resize(outs,(640,192))
cv2.imwrite('disp.png',disp_resized_np)
outs = cv2.applyColorMap(outs,colormap=cv2.COLORMAP_SUMMER)
cv2.imwrite('disp_color.png', outs)
if __name__ == '__main__':
args = parse_args()
test_simple(args)
onnx_inference()
#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
#include <iostream>
#include <fstream>
using namespace cv;
using namespace dnn;
using namespace std;
class baseDepth
{
public:
baseDepth(int h, int w, const string& model_path = "model/mono.onnx") {
this->inHeight = h;
this->inWidth = w;
cout << "start" << endl;
this->net = readNetFromONNX(model_path);
cout << "end" << endl;
};
Mat depth(Mat& frame);
Mat viewer(vector<Mat> imgs, double alpha=0.80);
private:
Net net;
int inWidth;
int inHeight;
};
Mat baseDepth::depth(Mat& frame) {
int ori_h = frame.size[0];
int ori_w = frame.size[1];
cout << "ori: " << ori_h << " , " << ori_w << endl;
Mat blobImage = blobFromImage(frame, 1.0 / 255.0, Size(this->inWidth, this->inHeight), Scalar(0, 0, 0), true, false);
this->net.setInput(blobImage);
cout << "read model" << endl;
vector<Mat> scores;
this->net.forward(scores, this->net.getUnconnectedOutLayersNames());
int channel = scores[0].size[1];
int h = scores[0].size[2];
int w = scores[0].size[3];
cout << "c: " << channel << " , h: " << h << " , w: " << w << endl;
Mat depthMap(scores[0].size[2], scores[0].size[3], CV_32F, scores[0].ptr<float>(0, 0));
cout << depthMap.size() << endl;
depthMap *= 255.0;
depthMap.convertTo(depthMap, CV_8UC1);
resize(depthMap, depthMap, Size(ori_w, ori_h));
applyColorMap(depthMap, depthMap, COLORMAP_MAGMA);
imwrite("inference/depth_color.png", depthMap);
return depthMap;
}
Mat baseDepth::viewer(vector<Mat> imgs, double alpha){
Size imgOriSize = imgs[0].size();
Size imgStdSize(imgOriSize.width * alpha, imgOriSize.height * alpha);
Mat imgStd;
int delta_h = 2, delta_w = 2;
Mat imgWindow(imgStdSize.height+2*delta_h, imgStdSize.width*2+3*delta_w, imgs[0].type());
resize(imgs[0], imgStd, imgStdSize, alpha, alpha, INTER_LINEAR);
imgStd.copyTo(imgWindow(Rect(Point2i(delta_w, delta_h), imgStdSize)));
resize(imgs[1], imgStd, imgStdSize, alpha, alpha, INTER_LINEAR);
imgStd.copyTo(imgWindow(Rect(Point2i(imgStdSize.width+2*delta_w, delta_h), imgStdSize)));
return imgWindow;
}
...
if(config.model_name == "monodepth"){
int h = 192, w = 640;
baseDepth model(h, w);
Mat depthMap = model.depth(srcimg);
static const string kWinName = "Deep learning Mono depth estimation in OpenCV";
namedWindow(kWinName, WINDOW_NORMAL);
Mat res = model.viewer({srcimg, depthMap}, 0.90);
imshow(kWinName, res);
waitKey(0);
destroyAllWindows();
}
- 小结
转换过程主要遇到的问题: 1)MonoDepth模型较丰富,内容上涉及单目和双目估计,模型结构上又分为Encoder和Decoder两部分,转ONNX时需要合并成一个模型测试; 2)MonoDepth的Decoder部分需要输入多个特征层,而ONNX forward通常只支持单个输入,因此合并模型只forward了第一个特征层(实际也只用到了第一个特征层); 3)PIL、matplotlib、cv2对图像的排列顺序不尽相同,可能存在ONNX转换成功而结果很奇怪,此时需要多定位图像的读取和存储方式的差异; 4)深度估计只看深度结果图很难了解细节,需要跟原图放一起对比才能能清楚地理解深度,在输出时尽量保持在一起展示,添加颜色渲染,以提高辨识度。
|