IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 每天五分钟机器学习算法:拉格朗日乘数法和KKT条件 -> 正文阅读

[人工智能]每天五分钟机器学习算法:拉格朗日乘数法和KKT条件

KKT条件

当我们要求一个函数的极值,同时还有两种类型的约束条件,一种约束条件是等式约束,另外一种约束是不等式约束:

 

x是一个变量(n维,n个样本),我们想要找到使得f(x)最大的x,还要满足上面的约束。此时KKT条件就出来说话了,如果要想让x满足这个条件下的f(x)的最大值(极值点),那么需要满足KKT条件,条件如下:

 

我们来解释一下这个KKT条件,在极值点处f的梯度是一系列的不等式gi(x*)和等式hj(x*)的线性组合,其中不等式的约束ui≥0,而等式的λi不做约束,gi(x*)有<0,和=0两种情况,但是如何<0,那么μi一定是0(其实此时对应的xi就是非支持向量),也就是说只有gi(x*)=0的时候,此时ui才不是0(此时对应的xi就是支持向量),换句话说,只有x*在边界gi(x*)=0的时候,此时的gi才会出现在加权式中,接下来我们可以看到,也就是说支持向量才会起作用。

拉格朗日乘数法

我们在高等数学中经常会需要求解

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-11-05 00:28:48  更:2022-11-05 00:28:50 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/25 20:30:35-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码