| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> Keras可视化神经网络架构的4种方法 -> 正文阅读 |
|
[人工智能]Keras可视化神经网络架构的4种方法 |
我们在使用卷积神经网络或递归神经网络或其他变体时,通常都希望对模型的架构可以进行可视化的查看,因为这样我们可以 在定义和训练多个模型时,比较不同的层以及它们放置的顺序对结果的影响。还有可以更好地理解模型结构、激活函数、模型参数形状(神经元数量)等 keras 中有一些现成的包可以创建我们的神经网络模型的可视化表示。前三个包可以在模型训练之前使用(只需要定义和编译模型);但是Tensor Boards 要求用户在架构可视化之前根据准确的数据训练模型。 在开始进行可视化之前,我们先需要安装相应的包:
然后我们创建一个模型,并用这4个包来进行可视化: 在实际使用时我们希望的是通过可视化来对比模型架构,所以这里定义三个具有不同超参数 CNN 模型。我们创建了用户定义的函数来分别构建具有不同数量的 CNN 层、池化层和最后的密集层的三个不同模型。 架构1:浅层CNN+分类头
架构2:深层CNN+mlp分类头
架构3:深层CNN+分类头
有了这3个模型,我们将使用4种方法来可视化cnn的结构 ANN VisualizerANN Visualizer 的 Python 模块可以通过几行代码来可视化神经网络。它使用 Keras 和 Python 的 Graphviz 模块来生成一个整洁的神经网络图。它是最早的几个可视化包之一,但是最近已经不更新了,我们先介绍他是因为它算是最早出现的,也是最有名的。 ANN Visualizer可视化需要首先编译模型
主要参数如下: ann_viz(model, view=True, filename=”network.gv”, title=”MyNeural Network”) model—Keras的模型 view—在调用ann_viz()之后显示可视化图形 filename—文件名 title—自定义标题
上面就是使用ANN Visualizer创建的construct_model()的可视化图。可以看到,如果模型太大显示效果不会太好,这可能也是ANN Visualizer被淘汰的一个原因。 Visual KerasVisualkeras可以更容易地查看Keras的神经网络设计(可以单独查看,也可以作为TensorFlow的一部分)。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-o1YLyLE1-1667268736993)(http://images.overfit.cn/upload/20221101/a0b07202a79e483fbddf1fd4ed9efe64.png)] 可以通过可视化来对比出不同层的大小,这个还是很有用的 Keras Model Plotkeras.utils.plot_model是keras的内建绘制Keras模型函数,它使用了Graphviz和pydot包。从图上可,它不如上面使用的包直观,但它概述了顺序模型的基本体系结构。
一下是几个参数的介绍:
TensorBoardTensorBoard 允许用户可视化不同模型运行的日志。日志的范围可以从跟踪任何模型验证度量(不同轮次的准确率、召回率、RMSE、MAPE 和 MSE)到创建模型的架构图。它是一个强大的工具,可以可视化预期模型是否与预期设计匹配,同时深入了解如何使用操作级图更改模型。 我们需要先加载 TensorBoard,然后创建一个日志目录。
使用Keras TensorBoard回调函数,在训练前指定日志目录。然后通过向model.fit()提供这个回调来保证数据被记录在TensorBoard中。
X2_train和Y2_train是上面代码中没有反映的训练数据集。你可以用你自己的任何训练数据来替换它。 可以看到TensorBoard 始终会显示操作级别的图表,虽然对于每一层的架构并不明显,但是对于每一个操作缺失非常详细的。 还需要注意的是,与代码相比该图是上下颠倒的,因为数据从底部流向顶部。但是该图大致类似于 Keras 模型的描述,有额外的边通向其他计算节点。 https://avoid.overfit.cn/post/95ee9b5017e840fa85ac63921a9d0def 作者:Angel Das |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 | -2024/11/25 20:51:22- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |