IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> m基于GRNN广义回归神经网络的飞机发动机剩余寿命预测matlab仿真训练集采用C-MAPSS数据集 -> 正文阅读

[人工智能]m基于GRNN广义回归神经网络的飞机发动机剩余寿命预测matlab仿真训练集采用C-MAPSS数据集

目录

1.算法描述

2.仿真效果预览

3.MATLAB核心程序

4.完整MATLAB


1.算法描述

? ? ? ?GRNN建立在非参数核回归基础上,以样本数据为后验条件,通过执行诸如Parzen非参数估计,从观测样本里求得自变量和因变量之间的联结概率密度函数之后,直接计算出因变量对自变量的回归值。GRNN不需要设定模型的形式,但是其隐回归单元的核函数中有光滑因子,它们的取对网络有很大影响,需优化取值。GRNNb论具有良好的函数逼近性能,而且因为其网络训练更为方便,因此,GRNN在信号过程、结构分析、控制决策系统、金融领域、生物工程领域等各个科学和工程领域得到了广泛的应用。

? ? ? ? 广义回归神经网络的理论基础是非线性核回归分析,非独立变量y相对于独立变量x的回归分析实际上是计算具有最大概率值的y。设随机变量x和y的联合概率密度函数为f (x ,y),已知x的观测值为X,则y相对于X的回归,即条件均值为:

对于未知的概率密度函数f (x, y),可由x和y的观测样本经非参数估计得:?

? ? ? ?GRNN通常被用来进行函数逼近。它具有一个径向基隐含层和一个特殊的线性层。第一层和第二层的神经元数目都与输入的样本向量对的数目相等。GRNN结构如图所示,整个网络包括四层神经元:输入层、模式层、求和层与输出层。?

? ? ? ?输入层的神经元数目与学习样本中输入向量的维数m相等,每个神经元都是一个简单的分布单元,这些神经元直接将输入变量传递到隐含层中。?


? ? ? ?C-MAPSS Data Set里面有一个read me 的 txt文件。training 是给建模用的。 test 和 rul 是给 建模后验证用的。 每个 test 里面都有100组情况? 对应的 rul里面有 100个数值。 rul 里面的数值就是真实值。 建模之后 跑test的数据 应该 给出接近rul的数值

1.1数据分析

1)? unit number

2)? time, in cycles

3)? operational setting 1

4)? operational setting 2

5)? operational setting 3

6)? sensor measurement? 1

7)? sensor measurement? 2

...

26) sensor measurement? 26

数据第一列是机器的编号,第二列是每个机器的运行的时间序列标号,3~5是对应的设置,6~最后一列是传感器的测量值。

2.仿真效果预览

matlab2022a仿真结果如下:

?

3.MATLAB核心程序

%%
%Step1
STR        = 1;%选择数据标号1,2,3,4
Name_Train = ['data\00',num2str(STR),'\','train_FD00',num2str(STR),'.txt'];
Name_RUL   = ['data\00',num2str(STR),'\','RUL_FD00',num2str(STR),'.txt'];
%读取数据
Data_Train = load(Name_Train);
Data_RUL   = load(Name_RUL); 

%%
%Step2
%计算每个机器的时间
%得到机器编号
Mach_No = unique(Data_Train(:,1));
for i = 1:length(Mach_No)
    Index        = find(Data_Train(:,1) == i);  
    %平滑预处理
    used         = [7,8,9,12,13,14,16,17,18];
    tmps         = Data_Train(Index,used);
    [R,C]        = size(tmps);
    dout         = zeros(R,C);
    for mm = 1:C
        dout(:,mm) = [func_smooth(tmps(:,mm),32)]'; 
    end
    Mach_Info{i} = dout; 
    RUL_Train(i) = length(Index);  
end

figure;    
subplot(121);
plot(Data_Train(find(Data_Train(:,1) == 1),7));
title('信号预处理之前');
subplot(122);
plot(Mach_Info{1}(:,1));
title('信号预处理之后');

%%
%Step3
%特征提取
P = [];
T = [];
for i = 1:length(Mach_No)
    tmps = Mach_Info{i};
    %提取当前矩阵的特征
    Y  = func_pca(tmps',1);
    Y  = Y';
    for j = 1:length(Y)
        P = [P;Mach_Info{i}(j,1:6),Y(j,:)];
        T = [T;(RUL_Train(i)-j)];
    end
end
%%
%Step4
%使用神经网络进行训练
%%归一化处理
%对pt矩阵进行归一化处理                
%GRNN网络训练
net = newgrnn(P',T',5.1);
save train_net.mat net
05_021_m

4.完整MATLAB

V

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-12-25 11:10:19  更:2022-12-25 11:10:34 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/25 20:15:53-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码