| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> 机器学习 | PCA -> 正文阅读 |
|
[人工智能]机器学习 | PCA |
一.基本原理是一种分析简化数据集的技术 PCA从原始变量出发,通过旋转变化(即原始变量的线性组合)构建出一组新的,互不相关的新变量,这些变量尽可能多的解释原始数据之间的差异性(即数据内在的结构),它们就称为原始数据的主成分。由于这些变量不相关,因此他们无重叠的各自解释一部分差异性。依照每个变量解释的差异性大小排序,它们称为第一主成分,第二主成分,以此类推 PCA旨在找到数据中的主成分,并利用这些主成分表征原始数据,从而达到将为的目的 工作原理可以由两个角度解释
做法是:数据中心化之后,对样本数据协方差矩阵进行特征分解,选取前d个最大的特征值对应的特征向量,即可将数据从原来的p维降到d维,也可根据奇异值分解来求解主成分 二.优缺点优点
缺点
三.适用场景
四.常见面试题1.为什么PCA不推荐用来避免过拟合?
2.简单解释一下什么是维数灾难?
3.降维的目的是什么? 降维是将高维度的数据保留下最重要的一些特征,去除噪声和不重要的特征,从而实现提升数据处理速度的目的。在实际的生产和应用中,降维在一定的信息损失范围内,可以为我们节省大量的时间和成本。降维也成为应用非常广泛的数据预处理方法 4.PCA的具体计算步骤?
5.PCA中的第一,第二主成分分别是什么?怎么确定? 主成分分析是设法将原来众多具有一定相关性(比如p个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标 主成分分析,是考察多个变量间相关性的一种多元统计方法,研究如何通过少数几个主成分来揭示多个变量间的内部结构,即从原始变量中导出少数几个主成分,使它们尽可能多地保留原始变量的信息,且彼此之间互不相关,通常数学上的处理就是将原来的p个指标作线性组合,作为新的综合指标 最经典的做法就是:
6.PCA降维的准则?
7.最大差异性的主成分方向? 通过计算数据矩阵的协方差矩阵,然后得到协方差矩阵的特征值特征向量,选择特征值最大(即方差最大)的k个特征所对应的特征向量组成的矩阵 这样就可以将数据矩阵转换到新的空间当中,实现数据特征的降维 8.PCA的实现方式? ①基于特征值分解协方差矩阵实现PCA算法 输入:数据集X = {X1,X2,X3,...,Xn},需要降到k维
②基于SVD分解协方差矩阵实现PCA算法 输入:数据集X = {X1,X2,X3,...,Xn},需要降到k维
|
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 | -2024/11/25 20:36:04- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |