| |
|
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
| -> 人工智能 -> LCF-ATEPC(2020 Elsevier)面向中文的方面级提取和分类 -> 正文阅读 |
|
|
[人工智能]LCF-ATEPC(2020 Elsevier)面向中文的方面级提取和分类 |
|
论文题目(Title):A Multi-task Learning?Model?for Chinese-oriented Aspect Polarity Classification and Aspect Term Extraction (面向中文的方面极性分类和方面项提取的多任务学习模型) 研究问题(Question):面向中文的方面级情绪分析的多任务学习模型(LCF-ATEPC),该模型能够同时进行aspect term extraction(ATE)和aspect polarity classification(APC)两个子任务,能够同时对中英文评论进行分析,该模型集成了自适应领域的BERT模型 主要贡献(Contribution): 1.首次研究了面向多语种评论的结合APC子任务和ATE子任务的多任务模型,为中文方面项提取的研究提供了一种新的思路。 研究方法(Method):
研究过程(Process): ? ? ? ? 1.数据集(Dataset)
? ? ? ? 2.评估指标(Evaluation) F1,Accuracy ? ? ? ? 3.实验结果(Result)
总结(Conclusion):在以往的研究中,ATE子任务和APC子任务被视为独立的任务。此外,ATE和APC子任务的多任务学习模型还没有引起足够的重视。此外,面向汉语的ABSA任务的研究还不够充分,亟待提出和开展。针对上述问题,文章提出了基于MHSA和LCF机制的基于方面情感分析的多任务学习模型LCF- atepc,并首次将预先训练好的BERT应用于ATE子任务。文章提出的模型不仅适用于汉语,而且具有多语言性和适用性。该模型可以自动从评论中提取方面,并推断方面的极性。在ABSA任务的3个常用英文数据集和4个中文回顾数据集上的实证结果表明,与所有基于基本BERT的模型相比,LCF-ATEPC模型在ATE和APC任务上取得了最先进的性能。 |
|
|
|
|
| 上一篇文章 下一篇文章 查看所有文章 |
|
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
| 360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年11日历 | -2025/11/29 4:06:15- |
|
| 网站联系: qq:121756557 email:121756557@qq.com IT数码 |