| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> 逻辑回归、激活函数sigmoid、损失及优化、案例代码实现 -> 正文阅读 |
|
[人工智能]逻辑回归、激活函数sigmoid、损失及优化、案例代码实现 |
一、逻辑回归逻辑回归(Logistic Regression):是机器学习中的一种分类模型,是一种分类算法,与回归之间有一定的联系,由于算法的简单和高效,在实际中应用非常广泛 应用场景:广告点击率、是否为垃圾邮件、是否患病、金融诈骗、虚假账号等,特点是都属于两个类别之间的判断,逻辑回归是解决二分类问题的利器 原理:掌握逻辑回归,需知道输入值是什么以及如何判断其输出 输入是一个线性回归的结果 二、激活函数sigmoid函数,如图 逻辑回归最终的分类是通过属于某个类别的概率值来判断是否属于某个类别,且这个类别默认标记为1(正例),另外的一个类别会标记为0(反例),方便损失计算 ?判断标准
输出结果解释:假设有两个类别A,B,并且假设我们的概率值为属于A(1)这个类别的概率值,现在有一个样本的输入到逻辑回归输出结果0.6,那么这个概率值超过0.5,意味着我们训练或者预测的结果就是A(1)类别,反之,若得出结果为0.3,则训练或者预测结果就为B(0)类别 三、损失以及优化3.1 损失逻辑回归的损失,称之为对数似然损失,公式如下:
?
代入计算如下 ?3.2 优化使用梯度下降优化算法,去减少损失函数的值。这样去更新逻辑回归前面对应算法的权重参数,提升原本属于1类别的概率,降低原本是0类别的概率 四、逻辑回归API
默认将类别数量少的当做正例,LogisticRegression方法相当于 SGDClassifier(loss="log", penalty=" "),SGDClassifier实现了一个普通的随机梯度下降学习,而使用LogisticRegression(实现了SAG) 五、案例:良/恶性乳腺癌肿瘤分类预测原始数据的下载地址:https://archive.ics.uci.edu/ml/machine-learning-databases/
操作使用如下 ?完整代码如下
?输出
学习导航:http://xqnav.top/ |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 | -2025/1/27 17:21:46- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |