Solidity学习记录
第一章 创建生产僵尸的工厂 第二章 设置僵尸的攻击功能 第三章 编写DAPP所需的基础理论 第四章 完善僵尸功能 第五章 ERC721 标准和加密资产
前言
这应该是Solidity学习记录的最后一章,这五章内容足够应对学生上课的需要,不需要发布的程序用这些知识编程足以。如果需要发布软件,还需要有前端知识HTML, JavaScript以及 JQuery 等来写网站。有需要的可以自学,这里不做详细叙述了。
一、本章主要目的
作为Solidity知识的最后一章,这章主要介绍了代币, ERC721 标准, 以及加密资产,预防溢出等增强程序安全性的操作。
二、学习过程
1.本节课程知识点
1、一个 代币 在以太坊基本上就是一个遵循一些共同规则的智能合约——即它实现了所有其他代币合约共享的一组标准函数。在智能合约内部,通常有一个映射,mapping(address => uint256) balances,用于追踪每个地址还有多少余额。所以基本上一个代币只是一个追踪谁拥有多少该代币的合约,和一些可以让那些用户将他们的代币转移到其他地址的函数。
2、代币标准这里介绍两种:ERC20 代币和ERC721 代币。主要区别:ERC20 代币可以分割,可以发给对方0.025以太(类似于数字支付,可以支付小数);ERC721 代币是不能互换的,因为每个代币都被认为是唯一且不可分割的,只能以整个单位交易它们,并且每个单位都有唯一的 ID(类似于纸币,不能撕碎了交易——撕毁人民币违法——只能整张使用)。
3、由于所有 ERC20 代币共享具有相同名称的同一组函数,它们都可以以相同的方式进行交互。这意味着如果你构建的应用程序能够与一个 ERC20 代币进行交互,那么它就也能够与任何 ERC20 代币进行交互。 (当交易所添加一个新的 ERC20 代币时,实际上它只需要添加与之对话的另一个智能合约。 用户可以让那个合约将代币发送到交易所的钱包地址,然后交易所可以让合约在用户要求取款时将代币发送回给他们。)
4、ERC721 标准:
contract ERC721 {
event Transfer(address indexed _from, address indexed _to, uint256 _tokenId);
event Approval(address indexed _owner, address indexed _approved, uint256 _tokenId);
function balanceOf(address _owner) public view returns (uint256 _balance);
function ownerOf(uint256 _tokenId) public view returns (address _owner);
function transfer(address _to, uint256 _tokenId) public;
function approve(address _to, uint256 _tokenId) public;
function takeOwnership(uint256 _tokenId) public;
}
(ERC721目前是一个草稿,还没有正式商定的实现。在本教程中,我们使用的是 OpenZeppelin 库中的当前版本,但在未来正式发布之前它可能会有更改。 所以把这 一个可能的实现当作考虑,但不要把它作为 ERC721 代币的官方标准。)
5、在Solidity中使用多重继承的时候,你只需要用逗号 , 来隔开几个你想要继承的合约,例如: contract ZombieOwnership is ZombieAttack, ERC721{}。
6、我们正在用 ERC721 代币标准,意味着其他合约将期望我们的合约以这些确切的名称来定义函数。这就是这些标准实用的原因——如果另一个合约知道我们的合约符合 ERC721 标准,它可以直接与我们交互,而无需了解任何关于我们内部如何实现的细节。
7、ERC721 规范有两种不同的方法来转移代币:
function transfer(address _to, uint256 _tokenId) public;
function approve(address _to, uint256 _tokenId) public;
function takeOwnership(uint256 _tokenId) public;
第一种方法是代币的拥有者调用transfer 方法,传入他想转移到的 address 和他想转移的代币的 _tokenId。
第二种方法是代币拥有者首先调用 approve,然后传入与以上相同的参数。接着,该合约会存储谁被允许提取代币,通常存储到一个 mapping (uint256 => address) 里。然后,当有人调用 takeOwnership 时,合约会检查 msg.sender 是否得到拥有者的批准来提取代币,如果是,则将代币转移给他。 (一种情况是代币的发送者调用函数;另一种情况是代币的接收者调用它。)
8、合约安全增强: 预防溢出和下溢: 为了防止这些情况,OpenZeppelin 建立了一个叫做 SafeMath 的 库(library),默认情况下可以防止这些问题。一个库是 Solidity 中一种特殊的合约。其中一个有用的功能是给原始数据类型增加一些方法。SafeMath 库有四个方法 — add, sub, mul, 以及 div。现在我们可以这样来让 uint256 调用这些方法:
using SafeMath for uint256;
uint256 a = 5;
uint256 b = a.add(3);
uint256 c = a.mul(2);
9、SafeMath 的部分代码:
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
assert(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
}
首先我们有了 library 关键字 — 库和 合约很相似,但是又有一些不同。 就我们的目的而言,库允许我们使用 using 关键字,它可以自动把库的所有方法添加给一个数据类型:
using SafeMath for uint;
uint test = 2;
test = test.mul(3);
test = test.add(5);
(注意 mul 和 add 其实都需要两个参数。 在我们声明了 using SafeMath for uint 后,我们用来调用这些方法的 uint 就自动被作为第一个参数传递进去了(在此例中就是 test)。)
10、为了防止溢出和下溢,我们可以在我们的代码里找 +, -, *, 或 /,然后替换为 add, sub, mul, div. 将
myUint++;
改为
myUint = myUint.add(1);
2.最终代码
代码如下:
erc721.sol
pragma solidity ^0.4.19;
contract ERC721 {
event Transfer(address indexed _from, address indexed _to, uint256 indexed _tokenId);
event Approval(address indexed _owner, address indexed _approved, uint256 indexed _tokenId);
function balanceOf(address _owner) external view returns (uint256);
function ownerOf(uint256 _tokenId) external view returns (address);
function transferFrom(address _from, address _to, uint256 _tokenId) external payable;
function approve(address _approved, uint256 _tokenId) external payable;
}
safemath.sol
pragma solidity ^0.4.19;
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
assert(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a / b;
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
}
library SafeMath32 {
function mul(uint32 a, uint32 b) internal pure returns (uint32) {
if (a == 0) {
return 0;
}
uint32 c = a * b;
assert(c / a == b);
return c;
}
function div(uint32 a, uint32 b) internal pure returns (uint32) {
uint32 c = a / b;
return c;
}
function sub(uint32 a, uint32 b) internal pure returns (uint32) {
assert(b <= a);
return a - b;
}
function add(uint32 a, uint32 b) internal pure returns (uint32) {
uint32 c = a + b;
assert(c >= a);
return c;
}
}
library SafeMath16 {
function mul(uint16 a, uint16 b) internal pure returns (uint16) {
if (a == 0) {
return 0;
}
uint16 c = a * b;
assert(c / a == b);
return c;
}
function div(uint16 a, uint16 b) internal pure returns (uint16) {
uint16 c = a / b;
return c;
}
function sub(uint16 a, uint16 b) internal pure returns (uint16) {
assert(b <= a);
return a - b;
}
function add(uint16 a, uint16 b) internal pure returns (uint16) {
uint16 c = a + b;
assert(c >= a);
return c;
}
}
ownable.sol
pragma solidity ^0.4.19;
contract Ownable {
address private _owner;
event OwnershipTransferred(
address indexed previousOwner,
address indexed newOwner
);
constructor() internal {
_owner = msg.sender;
emit OwnershipTransferred(address(0), _owner);
}
function owner() public view returns(address) {
return _owner;
}
modifier onlyOwner() {
require(isOwner());
_;
}
function isOwner() public view returns(bool) {
return msg.sender == _owner;
}
function renounceOwnership() public onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
function transferOwnership(address newOwner) public onlyOwner {
_transferOwnership(newOwner);
}
function _transferOwnership(address newOwner) internal {
require(newOwner != address(0));
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
zombiefactory.sol
pragma solidity ^0.4.19;
import "./ownable.sol";
import "./safemath.sol";
contract ZombieFactory is Ownable {
using SafeMath for uint256;
using SafeMath32 for uint32;
using SafeMath16 for uint16;
event NewZombie(uint zombieId, string name, uint dna);
uint dnaDigits = 16;
uint dnaModulus = 10 ** dnaDigits;
uint cooldownTime = 1 days;
struct Zombie {
string name;
uint dna;
uint32 level;
uint32 readyTime;
uint16 winCount;
uint16 lossCount;
}
Zombie[] public zombies;
mapping (uint => address) public zombieToOwner;
mapping (address => uint) ownerZombieCount;
function _createZombie(string _name, uint _dna) internal {
uint id = zombies.push(Zombie(_name, _dna, 1, uint32(now + cooldownTime), 0, 0)) - 1;
zombieToOwner[id] = msg.sender;
ownerZombieCount[msg.sender] = ownerZombieCount[msg.sender].add(1);
emit NewZombie(id, _name, _dna);
}
function _generateRandomDna(string _str) private view returns (uint) {
uint rand = uint(keccak256(abi.encodePacked(_str)));
return rand % dnaModulus;
}
function createRandomZombie(string _name) public {
require(ownerZombieCount[msg.sender] == 0);
uint randDna = _generateRandomDna(_name);
randDna = randDna - randDna % 100;
_createZombie(_name, randDna);
}
}
zombiefeeding.sol
pragma solidity ^0.4.19;
import "./zombiefactory.sol";
contract KittyInterface {
function getKitty(uint256 _id) external view returns (
bool isGestating,
bool isReady,
uint256 cooldownIndex,
uint256 nextActionAt,
uint256 siringWithId,
uint256 birthTime,
uint256 matronId,
uint256 sireId,
uint256 generation,
uint256 genes
);
}
contract ZombieFeeding is ZombieFactory {
KittyInterface kittyContract;
modifier onlyOwnerOf(uint _zombieId) {
require(msg.sender == zombieToOwner[_zombieId]);
_;
}
function setKittyContractAddress(address _address) external onlyOwner {
kittyContract = KittyInterface(_address);
}
function _triggerCooldown(Zombie storage _zombie) internal {
_zombie.readyTime = uint32(now + cooldownTime);
}
function _isReady(Zombie storage _zombie) internal view returns (bool) {
return (_zombie.readyTime <= now);
}
function feedAndMultiply(uint _zombieId, uint _targetDna, string _species) internal onlyOwnerOf(_zombieId) {
Zombie storage myZombie = zombies[_zombieId];
require(_isReady(myZombie));
_targetDna = _targetDna % dnaModulus;
uint newDna = (myZombie.dna + _targetDna) / 2;
if (keccak256(abi.encodePacked(_species)) == keccak256(abi.encodePacked("kitty"))) {
newDna = newDna - newDna % 100 + 99;
}
_createZombie("NoName", newDna);
_triggerCooldown(myZombie);
}
function feedOnKitty(uint _zombieId, uint _kittyId) public {
uint kittyDna;
(,,,,,,,,,kittyDna) = kittyContract.getKitty(_kittyId);
feedAndMultiply(_zombieId, kittyDna, "kitty");
}
}
zombiehelper.sol
pragma solidity ^0.4.19;
import "./zombiefeeding.sol";
contract ZombieHelper is ZombieFeeding {
uint levelUpFee = 0.001 ether;
modifier aboveLevel(uint _level, uint _zombieId) {
require(zombies[_zombieId].level >= _level);
_;
}
function withdraw() external onlyOwner {
address _owner = owner();
_owner.transfer(address(this).balance);
}
function setLevelUpFee(uint _fee) external onlyOwner {
levelUpFee = _fee;
}
function levelUp(uint _zombieId) external payable {
require(msg.value == levelUpFee);
zombies[_zombieId].level = zombies[_zombieId].level.add(1);
}
function changeName(uint _zombieId, string _newName) external aboveLevel(2, _zombieId) onlyOwnerOf(_zombieId) {
zombies[_zombieId].name = _newName;
}
function changeDna(uint _zombieId, uint _newDna) external aboveLevel(20, _zombieId) onlyOwnerOf(_zombieId) {
zombies[_zombieId].dna = _newDna;
}
function getZombiesByOwner(address _owner) external view returns(uint[]) {
uint[] memory result = new uint[](ownerZombieCount[_owner]);
uint counter = 0;
for (uint i = 0; i < zombies.length; i++) {
if (zombieToOwner[i] == _owner) {
result[counter] = i;
counter++;
}
}
return result;
}
}
zombieattack.sol
pragma solidity ^0.4.19;
import "./zombiehelper.sol";
contract ZombieAttack is ZombieHelper {
uint randNonce = 0;
uint attackVictoryProbability = 70;
function randMod(uint _modulus) internal returns(uint) {
randNonce = randNonce.add(1);
return uint(keccak256(abi.encodePacked(now, msg.sender, randNonce))) % _modulus;
}
function attack(uint _zombieId, uint _targetId) external onlyOwnerOf(_zombieId) {
Zombie storage myZombie = zombies[_zombieId];
Zombie storage enemyZombie = zombies[_targetId];
uint rand = randMod(100);
if (rand <= attackVictoryProbability) {
myZombie.winCount = myZombie.winCount.add(1);
myZombie.level = myZombie.level.add(1);
enemyZombie.lossCount = enemyZombie.lossCount.add(1);
feedAndMultiply(_zombieId, enemyZombie.dna, "zombie");
} else {
myZombie.lossCount = myZombie.lossCount.add(1);
enemyZombie.winCount = enemyZombie.winCount.add(1);
_triggerCooldown(myZombie);
}
}
}
zombieownership.sol
pragma solidity ^0.4.19;
import "./zombieattack.sol";
import "./erc721.sol";
import "./safemath.sol";
contract ZombieOwnership is ZombieAttack, ERC721 {
using SafeMath for uint256;
mapping (uint => address) zombieApprovals;
function balanceOf(address _owner) external view returns (uint256) {
return ownerZombieCount[_owner];
}
function ownerOf(uint256 _tokenId) external view returns (address) {
return zombieToOwner[_tokenId];
}
function _transfer(address _from, address _to, uint256 _tokenId) private {
ownerZombieCount[_to] = ownerZombieCount[_to].add(1);
ownerZombieCount[msg.sender] = ownerZombieCount[msg.sender].sub(1);
zombieToOwner[_tokenId] = _to;
emit Transfer(_from, _to, _tokenId);
}
function transferFrom(address _from, address _to, uint256 _tokenId) external payable {
require (zombieToOwner[_tokenId] == msg.sender || zombieApprovals[_tokenId] == msg.sender);
_transfer(_from, _to, _tokenId);
}
function approve(address _approved, uint256 _tokenId) external payable onlyOwnerOf(_tokenId) {
zombieApprovals[_tokenId] = _approved;
emit Approval(msg.sender, _approved, _tokenId);
}
}
总结
本章知识点只有两个,一个是代币标准,一个是代码安全的预防溢出,这里就不做过多总结了。在文章最后,希望我的这个学习记录可以帮到需要的人。
|