IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 区块链 -> Python 算法交易实验22 评估指标计算 -> 正文阅读

[区块链]Python 算法交易实验22 评估指标计算

说明

No Measurement , No Improvement

这套并不是标准量化交易指标,一方面我对那套指标的确也不是很熟,另外我觉得可能自己琢磨一套会更实用一些。主要考虑以下几方面:

  • 1 交易的数量
  • 2 盈利特性:单均盈利率
  • 3 交易持续周期
  • 4 最大持有的股票数
  • 5 输赢:赢率和真实赢率
  • 6 盈亏比
  • 7 最大回撤

总体上说:

  • 我希望算法产生的交易够多,但不要太多,这样可以具有统计性,又不至于偏向高频;
  • 交易持续周期会影响到资金的占用、利用率等;
  • 最大持有的股票数一方面可以使整个组合表现出更好的稳定性,当然也会影响到资金占用;
  • 从信号的产生机制上,一定会混杂很多白噪声,所以要分为赢率和真实赢率;
  • 盈亏比则是考验算法的生存性;
  • 最大回撤则是投资风险的度量。回撤在所难免,关键要看能不能接受,值不值得;

内容

通过信号机制产生候选交易,通过模型来识别优质的交易,通过策略来进行修正

假设有一种信号机制(买入和卖出),可以为股票生成若干候选交易,我们希望对这些候选交易进行评估:

  • 1 可以根据信号筛选交易
  • 2 可以根据股票进行筛选
  • 3 可以根据交易期间进行筛选

1 候选交易

根据买入和卖出信号集,我们可以获得足够的候选交易hs300_df
在这里插入图片描述

2 根据信号集进行筛选

信号集有一个选择字段是signal_tuple(我隐藏了),第一步将关注的候选集根据信号拆分出来。其他可选的是股票列表和时间。

tem_df1 = process_filter_signal_df(hs300_df)

3 根据筛选后的信号集计算基本指标

随意选定一只股票,看起来还不错,一共466个候选订单,真实赢率29%,单均盈利率是7%,盈亏比为3.4。

some_code = '600010'
tem_df2 = tem_df1[tem_df1['code'] == some_code]
process_kpi001_base(tem_df2)

{'total_orders': 466,
 'win_rate': 0.4291845493562232,
 'real_win_rate': 0.2918454935622318,
 'win_v_loss': 3.4094531520791054,
 'hold_stocks': 1,
 'mean_margin': 0.07076018194400928}

Note: 候选订单并不是模拟交易的订单,可能会更多一些。候选订单的目的是尽量多的生成可能的交易,供模型学习。

4 期间表现

为了更直观的看到订单的实时表现,我们需要构造交易活动期间的所有数据:根据信号对的起始时间,通过merge全量分钟数据构造交易的活动(明细)数据

通过活动数据,我们可以观察:

  • 1 每个订单的最大、最小涨跌以及最大回撤
  • 2 若干个订单总的资金敞口和回撤

我们要计算两类数据:

  • 1 交易在打开和平仓之间的明细数据,用来看资金敞口。
  • 2 结合明细数据,在每笔订单的平仓点更新资本的数值,从而计算回撤

从单个的例子可以看到:

  • 1 最大回撤比较高。主要原因是冲顶后,没有及时控制(虽然还是赚的)。
  • 2 资金敞口很高。因为没有控制候选交易的数量,可以给每支股票一个cap。
  • 3 赢单的亏损一般不会超过10%。这样可以设置止损。
  • 4 输单的回撤事实上没有赢单大。因此回撤控制是用来确保更大的利益。
res_600010_dict ,detail_600010_dict= process_kpi002_performance_of_a_code(tem_df1,'600010')

res_600010_dict
{'max_drawback': -0.3254396180829447,
 'max_exposure': 112383526.72755373,
 'median_hold_days': 27.0,
 'median_order_drawback': -0.13348810214741724,
 'median_margin': -0.00986446020488569,
 'real_win_min_interest':           count      mean       std       min       25%       50%       75%  \
 real_win                                                                      
 0         330.0 -0.060642  0.044292 -0.179422 -0.088277 -0.054769 -0.020774   
 1         136.0 -0.033090  0.014999 -0.084479 -0.044288 -0.036120 -0.027810   
 
                max  
 real_win            
 0        -0.002000  
 1         0.006458  ,
 'real_win_max_draw_back':           count      mean       std       min       25%       50%       75%  \
 real_win                                                                      
 0         330.0 -0.095822  0.058116 -0.195652 -0.133609 -0.094828 -0.037787   
 1         136.0 -0.288716  0.054608 -0.313901 -0.313901 -0.313901 -0.313901   
 
                max  
 real_win            
 0         0.000000  
 1        -0.171184  ,
 'real_lose_max_interest':            count      mean       std       min       25%       50%       75%  \
 real_lose                                                                      
 0          434.0  0.286946  0.374751 -0.008085  0.009760  0.079744  0.870202   
 1           32.0  0.031577  0.027086 -0.002000  0.005677  0.029256  0.059415   
 
                 max  
 real_lose            
 0          0.952228  
 1          0.084441  ,
 'real_lose_draw_back':            count      mean       std       min       25%       50%       75%  \
 real_lose                                                                      
 0          434.0 -0.150239  0.108157 -0.313901 -0.313901 -0.130222 -0.057851   
 1           32.0 -0.177587  0.017701 -0.195652 -0.195652 -0.177778 -0.166667   
 
                 max  
 real_lose            
 0          0.000000  
 1         -0.132231  }

将多只股票的结果混合

code_detail_dict_list = [detail_600010_dict,detail_600031_dict,detail_300677_dict]
res_dict1 = process_kpi003_merge_codes(code_detail_dict_list)
{'median_hold_days': 13.0,
 'median_order_drawback': -0.10698824984539267,
 'median_margin': -0.00986446020488569,
 'real_win_min_interest':           count      mean       std       min       25%       50%       75%  \
 real_win                                                                      
 0         583.0 -0.053453  0.044081 -0.200425 -0.076391 -0.043757 -0.017635   
 1         173.0 -0.035720  0.023631 -0.148880 -0.044288 -0.036120 -0.025843   
 
                max  
 real_win            
 0        -0.000747  
 1         0.006458  ,
 'real_win_max_draw_back':           count      mean       std       min       25%       50%       75%  \
 real_win                                                                      
 0         583.0 -0.084104  0.058984 -0.375151 -0.130222 -0.075816 -0.030368   
 1         173.0 -0.267715  0.072453 -0.359838 -0.313901 -0.313901 -0.171184   
 
                max  
 real_win            
 0         0.000000  
 1        -0.074689  ,
 'real_lose_max_interest':            count      mean       std       min       25%       50%       75%  \
 real_lose                                                                      
 0          705.0  0.259113  0.625734 -0.008085  0.007892  0.043737  0.201414   
 1           51.0  0.038536  0.053529 -0.002000  0.005958  0.015402  0.059415   
 
                 max  
 real_lose            
 0          6.809396  
 1          0.318473  ,
 'real_lose_draw_back':            count      mean       std       min       25%       50%       75%  \
 real_lose                                                                      
 0          705.0 -0.122146  0.100985 -0.359838 -0.171184 -0.094828 -0.040484   
 1           51.0 -0.181062  0.040239 -0.375151 -0.195652 -0.177778 -0.164822   
 
                max  
 real_lose           
 0          0.00000  
 1         -0.10279  ,
 'max_exposure': 121383774.86651154,
 'max_drawback': -0.25227245169791146}

附录:函数

过滤信号集

def process_filter_signal_df(raw_singal_df, signal_pair = 'xxxx' ,code_group = None , dt_var = 'buy_dt' ,dt_start = '2017-01-01 09:30:00',dt_end = '2022-01-01 09:30:00',
                            target_var = 'target_gt0.1'):
    tem_df = raw_singal_df
    singal_sel = tem_df['signal_tuple'] == signal_pair
    if code_group is None:
        code_sel = tem_df['code'] != ''
    else:
        code_sel =  tem_df['code'].apply(lambda x: True if x in code_group else False)
    dt_sel = tem_df[dt_var].apply(lambda x: True if x >= dt_start and x < dt_end else False )
    the_sel = singal_sel & code_sel & dt_sel
    tem_df1 = tem_df[the_sel]
    return tem_df1

序列的回撤计算

import numpy as np 
# 最小值比去第一个值的差,回撤
def single_draw_back(dim1_array):
    nume = dim1_array.min()
    denom =dim1_array[0]
    return (nume -denom) / denom

# 计算一个序列的回撤
def cal_draw_back1(dim1_list  , init_cap= None):
    cap_list = list(dim1_list)
    min_cap = min(cap_list) -1
    max_cap = max(cap_list) +1
    first_cap = cap_list[0]

    before = init_cap or first_cap
    after = max_cap

    # 有一个会被diff拿掉
    cap_list.insert(0,before )
    cap_list.insert(0,before -1  )
    cap_list.append(after)

    cap_s = pd.Series(cap_list)
    cap_s1 =cap_s.diff().dropna().apply(lambda x: 1 if x >0 else 0 )

    # 如果序列不含初始资本,那么就要插入;否则插入初值即可

    peak_list = np.argwhere((np.array(cap_s1.iloc[:-1] ==1 )) & (np.array(cap_s1.iloc[1:] ==0 )))
    cap_list2 = cap_list[1:-1]

    peak_pos_array = peak_list.ravel()
    cap_array = np.array(cap_list2)

    res_list = [0]

    peak_pos_array_len = len(peak_pos_array)
    if peak_pos_array_len:
        for i in range(peak_pos_array_len):
            tem_res = single_draw_back(cap_array[peak_pos_array[i]:])
            res_list.append(tem_res)
    return min(res_list)


计算基本KPI

def process_kpi001_base(tem_df1, target_var = 'target_gt0.1'):
    res_dict = {}
    # 1 总笔数
    res_dict['total_orders'] = len(tem_df1)
    # 2 赢率
    res_dict['win_rate'] = tem_df1['is_win'].mean()
    # 3 真实赢率
    res_dict['real_win_rate'] = tem_df1[target_var].mean()
    # 4 盈亏比
    win_amount = tem_df1['net_profit'][tem_df1['is_win'] ==1].sum()
    loss_amount = abs(tem_df1['net_profit'][tem_df1['is_win'] ==0].sum())
    res_dict['win_v_loss'] = win_amount/loss_amount
    # 5 最大持有的股票数
    res_dict['hold_stocks'] = len(set(tem_df1['code']))
    # 6 盈利率
    res_dict['mean_margin'] = tem_df1['margin'].mean()
    return res_dict

计算期间表现KPI


# some_code = '600010'
# tem_df2 = tem_df1[tem_df1['code'] == some_code]
def process_kpi002_performance_of_a_code(tem_df1,some_code, minute_df_name = 'S12_ddx_df',minute_df_path1 =  './hs300_data_v3/%s/',init_cap = None,
                                        real_win_thres = 0.1,real_lose_thres = -0.1):
    res_dict = {}
    detail_dict = {}
    # 匹配一只股票的分钟数据,返回分钟明细
    tem_df2 = tem_df1[tem_df1['code'] == some_code]
    # 获取一只股票的分钟数据
    minute_df = fs.from_pickle(minute_df_name, minute_df_path1 % some_code)
    minute_df['dt'] = minute_df['date'] + ' ' + minute_df['minutes']
    minute_df_keep_cols = ['dt','LOW']
    minute_df1 = minute_df[minute_df_keep_cols]
    # 先将每个订单按照买卖时间填充
    all_dt_minutes = sorted(list(set(minute_df1['dt'])))
    
    order_res_df_list = []
    order_performance_rec_list= []
    order_close_df_list = []
    # 按订单逐个计算
    for i in range(len(tem_df2)):
        buy_keep_cols = ['order_num','code','buy_dt','buy_price','buy_vol','buy_amt','sell_dt','margin']
        some_order_dict =  dict(tem_df2[buy_keep_cols].iloc[i])

        pos_a = all_dt_minutes.index(some_order_dict['buy_dt'])
        pos_b = all_dt_minutes.index(some_order_dict['sell_dt'])

        some_order_df = pd.DataFrame()
        # 1 获取持续的时间列表
        some_order_df['dt'] = all_dt_minutes[pos_a : pos_b + 1]

        # 2 买入时信息
        some_order_df['order_num'] = some_order_dict['order_num']
        some_order_df['code'] = some_order_dict['code']
        some_order_df['buy_price'] = some_order_dict['buy_price']
        some_order_df['buy_vol'] = some_order_dict['buy_vol']
        some_order_df['buy_amt'] = some_order_dict['buy_amt']

        # 3 (假设)卖出时
        some_order_df1 = pd.merge(some_order_df, minute_df1, how='left', on='dt')
        some_order_df1['sell_amt'] = some_order_df1['LOW'] * some_order_df1['buy_vol']

        # 4 订单统计
        some_order_df1['fee'] = some_order_df1['sell_amt']* 0.002
        some_order_df1['gross_profit'] = some_order_df1['sell_amt'] - some_order_df1['buy_amt']
        some_order_df1['net_profit'] = some_order_df1['gross_profit']  - some_order_df1['fee'] 
        some_order_df1['is_win'] = some_order_df1['net_profit'].apply(lambda x: 1 if x >0 else 0)
        some_order_df1['margin'] = some_order_df1['net_profit']/ some_order_df1['buy_amt']

        some_order_df1['capital'] = some_order_df1['buy_amt'] + some_order_df1['net_profit'] 
        
        # 5 订单重要指标统计
        order_performance_dict = {}
        order_performance_dict['order_id'] = some_order_dict['code'] + '_' +some_order_dict['order_num']
        order_performance_dict['max_interest'] = some_order_df1['margin'].max()
        order_performance_dict['min_interest'] = some_order_df1['margin'].min()
        order_performance_dict['max_draw_back'] = cal_draw_back1(some_order_df1['capital'] )
        order_performance_dict['hold_minutes'] = len(some_order_df1)
        order_performance_dict['hold_days'] = int(len(some_order_df1) /240) + 1
        order_performance_dict['close_margin'] = some_order_dict['margin'] 

        order_performance_rec_list.append(order_performance_dict)

        res_keep_cols = ['dt','order_num','code', 'buy_amt', 'net_profit']
        order_res_df_list.append(some_order_df1[res_keep_cols])
        order_close_df_list.append(some_order_df1[res_keep_cols].iloc[-1:])
    
    # 合并计算结果
    order_performance_df = pd.DataFrame(order_performance_rec_list)
    order_res_df = pd.concat(order_res_df_list, ignore_index=True)
    # 明细数据汇总(多笔订单数据)
    order_res_df1= order_res_df.groupby(['dt']).sum()
    # 平仓数据
    order_close_df = pd.concat(order_close_df_list, ignore_index=True)
    order_close_s = order_close_df.groupby(['dt'])['net_profit'].sum()
    
    init_cap = init_cap or order_res_df1['buy_amt'].max()
    
    new_cap_df_list = []
    clost_dt_list = sorted(list(order_close_s.index))
    for i in range(len(clost_dt_list)):
        if i ==0:
            sub_df = order_res_df1[order_res_df1.index <= clost_dt_list[i]]
        else:
            sub_df = order_res_df1[(order_res_df1.index <= clost_dt_list[i]) & ((order_res_df1.index > clost_dt_list[i-1]) )]
        sub_df['updated_capital'] = sub_df['net_profit'] + init_cap
        new_cap_df_list.append(sub_df)
        init_cap += order_close_s[i]
        
    new_cap_df = pd.concat(new_cap_df_list)
    
    order_performance_df['real_win'] = order_performance_df['close_margin'].apply(lambda x: 1 if x >= real_win_thres else 0 )
    order_performance_df['real_lose'] = order_performance_df['close_margin'].apply(lambda x: 1 if x < real_lose_thres else 0 )
    
    
    # 汇总数据 -- 直接输出
    res_dict['max_drawback'] = cal_draw_back1(new_cap_df['updated_capital'])
    res_dict['max_exposure'] = order_res_df1['buy_amt'].max()
    res_dict['median_hold_days'] = order_performance_df['hold_days'].median()
    res_dict['median_order_drawback'] = order_performance_df['max_draw_back'].median()
    res_dict['median_margin'] = order_performance_df['close_margin'].median()
    # 赢的单子不会输很多
    res_dict['real_win_min_interest'] = order_performance_df.groupby(['real_win'])['min_interest'].describe()
    # 赢的单子回撤比较大
    res_dict['real_win_max_draw_back'] = order_performance_df.groupby(['real_win'])['max_draw_back'].describe()
    
    # 输的单子波动小,甚至有机会赚
    res_dict['real_lose_max_interest'] = order_performance_df.groupby(['real_lose'])['max_interest'].describe()
    # 输的单子甚至不如不输的单子回撤大
    res_dict['real_lose_draw_back'] =  order_performance_df.groupby(['real_lose'])['max_draw_back'].describe()

    # 明细数据 -- 用于进一步合并
    # 观察交易的盈亏特点
    detail_dict['order_performance_df'] = order_performance_df
    # 交易的分钟明细数据
    detail_dict['order_res_df1'] = order_res_df1
    # 交易的资产变动数据
    detail_dict['new_cap_df'] = new_cap_df
    
    return res_dict,detail_dict
        

混合多只票的KPI


def process_kpi003_merge_codes(code_detail_dict_list):
    perfomance_df_list = []
    order_res_df_list = []
    capital_df_list = []
    
    res_dict = {}
    for the_dict in code_detail_dict_list:
        tem_performance = the_dict['order_performance_df']
        perfomance_df_list.append(tem_performance)
        
        tem_order_df = the_dict['order_res_df1']
        order_res_df_list.append(tem_order_df)
        
        tem_cap_df = the_dict['new_cap_df'].reset_index()
        capital_df_list.append(tem_cap_df)
        
        
    concat_performance_df = pd.concat(perfomance_df_list, ignore_index=True)
    
    concat_order_res_df = pd.concat(order_res_df_list).reset_index()
    concat_order_res_df1 = concat_order_res_df.groupby(['dt']).sum()
    
    merge_capital_df = pd.DataFrame()
    tem_set = set([])
    for tem_cap_df in capital_df_list:
        tem_set = tem_set | set(tem_cap_df['dt'])
        
    merge_capital_df['dt'] = sorted(list(tem_set))
    
    capital_df_list1 = []
    for tem_cap_df in capital_df_list:
        tem_cap_df1 = pd.merge(merge_capital_df,tem_cap_df,how='left').fillna(method='pad')
        capital_df_list1.append(tem_cap_df1)
    
    concat_capital_df = pd.concat(capital_df_list1,ignore_index=True)
    concat_capital_df1 = concat_capital_df.groupby(['dt'])['updated_capital'].sum().reset_index()
    
    res_dict['median_hold_days'] = concat_performance_df['hold_days'].median()
    res_dict['median_order_drawback'] = concat_performance_df['max_draw_back'].median()
    res_dict['median_margin'] = concat_performance_df['close_margin'].median()
    
    # 赢的单子不会输很多
    res_dict['real_win_min_interest'] = concat_performance_df.groupby(['real_win'])['min_interest'].describe()
    # 赢的单子回撤比较大
    res_dict['real_win_max_draw_back'] = concat_performance_df.groupby(['real_win'])['max_draw_back'].describe()

    # 输的单子波动小,甚至有机会赚
    res_dict['real_lose_max_interest'] = concat_performance_df.groupby(['real_lose'])['max_interest'].describe()
    # 输的单子甚至不如不输的单子回撤大
    res_dict['real_lose_draw_back'] =  concat_performance_df.groupby(['real_lose'])['max_draw_back'].describe()
    
    res_dict['max_exposure'] =  concat_order_res_df1['buy_amt'].max()
    
    res_dict['max_drawback'] = cal_draw_back1(concat_capital_df1['updated_capital'])
    return res_dict
  区块链 最新文章
盘点具备盈利潜力的几大加密板块,以及潜在
阅读笔记|让区块空间成为商品,打造Web3云
区块链1.0-比特币的数据结构
Team Finance被黑分析|黑客自建Token“瞒天
区块链≠绿色?波卡或成 Web3“生态环保”标
期货从入门到高深之手动交易系列D1课
以太坊基础---区块验证
进入以太坊合并的五个数字
经典同态加密算法Paillier解读 - 原理、实现
IPFS/Filecoin学习知识科普(四)
上一篇文章      下一篇文章      查看所有文章
加:2021-10-13 11:29:54  更:2021-10-13 11:30:01 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/25 20:49:28-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码