| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 区块链 -> 【密码专栏】超强进阶:PLONK VS Groth16(上) -> 正文阅读 |
|
[区块链]【密码专栏】超强进阶:PLONK VS Groth16(上) |
前言 前文《天冷了,干了这碗“零知识证明”鸡汤》对「零知识证明学习」作了一个形象化的比喻:炖鸡汤。那么本系列的主要内容可以简单概括为《论高压锅炖鸡汤的一百种方法》之方法二。在学会了“清炖鸡汤”之后,不如来一口“阿胶鸡汤”补补脑细胞吧! 正如鸡汤不同风味之间各具千秋,不同的zk-SNARK方案也各有所长。zk-SNARK方案可以被分为【通用】与【非通用】zk-SNARK,PLONK与Groth16分别是其中的典型代表。通过本系列,我们将对PLONK算法内容作简要介绍,并指出PLONK和Groth16算法思路上的异同。 PLONK算法在[1]中提出,由来自于Protocol Labs的研究员Gabizon和以太坊隐私交易协议 Aztec Protocol 的两名研究人员合作完成。PLONK的提出晚于Groth16,在证明和验证的性能上与Groth16也存在一定差距,但是基于通用可更新的可信设置这一特点,使PLONK算法在零知识证明领域占据了一席之地。 可信设置 可信设置可以说是PLONK和Groth16两者间最显著的差异。正是为了避免一次性的可信设置,PLONK设计了后续的约束系统和问题压缩方式。那么什么是零知识证明中的可信设置呢?可信设置实际上是在创建一个用于证明验证的秘密,任何知道这个秘密的人都可以伪造证明通过验证。如果将零知识证明看作是一扇挡在证明者a和验证者b之间上锁的门,那么合法构建的证明就是可以打开门的口令,a提供口令即可进入房间。但是如果a得知了门的秘密也就是房间窗户的位置,那么a可以直接无视锁的存在翻窗进入房间。 ▲无窗的房间(无需可信设置的零知识证明) 显然,最安全的做法是找一个「没有窗的房间」,这也是一部分零知识证明方案的思路——无需可信设置,例如可扩展透明知识论证zk-STARKs和防弹证明Bulletproofs。虽然它们的安全性得到提高,但是目前这类方法的证明验证性能是远低于zk-SNARKs的,近线性的验证和规模较大的证明(proof)使其不适用于很多场景。 ▲窗户位置指定策略(基于可信设置的零知识证明) PLONK和Groth16的做法都是保留窗户,但是尽力保护窗户的位置不被别人知道。 显然,使用MPC时,参与者的数量越多,秘密的安全性越高,这类可信设置也比可信第三方更为用户所接受。遗憾的是,虽然目前提出了基于Groth16的可信设置[2],但是由于Groth16的秘密计算与特定的问题相关联,每次遇到新的问题时,必须重新开启一轮MPC可信设置。可想而知,需要多方参与的计算协议将是极为繁琐的,这样将大大影响Groth16的性能。相比之下,具备通用性的PLONK与MPC的适配度极高。 而之前提到的PLONK可信设置的可更新性则是指:通用的PLONK秘密可以通过再开启一轮MPC作更新。新生成的秘密安全性建立在两次MPC的安全性上,只要两次中有一个参与者是诚实的,这个秘密就是可信的。 约束系统 对于程序qeval, prover需要证明自己知道qeval(x)=35的解,即x=3。
门约束 在PLONK中,对于第i个门,可被描述为如下形式: (QLi)ai+(QRi)bi+(QOi)ci+(QMi)aibi+Qci=0 其中Q均为常数,a, b, c则是信号的下标。具体地,在PLONK中门约束可以被分为三类:算术约束(加法门和乘法门)、布尔约束、公共输入约束。 【算术约束】最为常见,用于表示电路中的所有加法门和乘法门,此时a,b,c分别表示门的左右输入和输出信号下标,Q_C一般为0。根据门的类型剩余的符号有不同的取值: 加法门:QLi=1,QRi=1,QOi=-1,QMi=0 乘法门:QLi=0,QRi=0,QOi=-1,QMi=1 【布尔约束】顾名思义,用于约束布尔类型的信号,其值只能取0或1。例如现在需要约束下标为j的信号∈{0, 1},那么门约束式子中各变量的取值为: 另外,针对问题中出现的证明方和验证方都知道取值的输入(公共输入),需要在约束系统中有所体现。例如要求约束下标j的信号取值为v,对应的取值为: 利用该式,我们可以很容易地表示上图中的所有门约束: 线约束可以分为两种情况: 同一多项式内部,例如:a1=a3 不同多项式之间,例如:a1=b1 当只需要考虑情况1时,可以通过构造p(x)=P(x)来实现约束: X(X)=X p(X+1)=p(X)(βX(X))+Y(X)+γ) P(X+1)=P(X)(βX(σ(X))+Y(X)+γ) p(0)=P(0)=1 其中β,γ为随机数,X->Y表示了待约束的多项式(例如: x-> a(x) ),P(x)使用了x的置换σ(x)。对于下面例子:
X →Y:X(2) → Y(2) and,Y(1)=Y(3)
σ(X):σ(2)=2
当且仅当Y(1)=Y(3)成立时,p(x)=P(x)。 现在,让我们增加问题的复杂度:需要约束的多项式个数为k时(仍然只考虑情况1)。自然地,设门的总数为n,我们可以对第j个多项式构造对应的p_j(x)=P_j(x),即 那么可以增加对x的映射,对于第j个多项式: 以上就是线约束的全部内容,其实质是为了保证电路中同一条或相连线上的值相等。 与Groth16类似,将上述的约束联立将得到一个完整的PLONK约束系统。通过将抽象的代码和电路转化为约束系统R1CS,我们可以将一个零知识证明问题固定下来。让我们带着问题进入下篇:PLONK中如何将R1CS转为多项式描述?它与Groth16做法区别在何处?敬请期待! 参考文献: |
|
|
上一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 | -2024/12/28 19:26:40- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |
数据统计 |