IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 区块链 -> zkSnarks:QAP上构造零知识证明 -> 正文阅读

[区块链]zkSnarks:QAP上构造零知识证明

协议一:抽样验证:prover向验证证明它知道一个d阶多项式

  • verifier:选取随机数s,发送给prover

  • prover:计算h(x) = P(x)/t(x) ,公开p(s) 、h(s)。

  • verifier:验证等式p(s) = t(s) h(s)是否成立

该证明了prover知道一个整除t(x)的多项式,但存在以下问题:

  • prover 知道s,可以计算出t(s), 随机选取h(s) ,并构造p(s) = t(s) h(s)

  • prover 知道点(s, t? h?), 可以构造经过该点的任意多项式

  • prover 即使不知道多项式p(x) ,也可以构造多项式p’(x) = t(x) h’(x) 成立

协议二: 同态隐藏

  • verifier

    • 选取随机数s,计算 E ( s i ) = g s i i = 0 , . . . , d {E(s^i) = g ^{s_i}}_{i=0,...,d} E(si)=gsi?i=0,...,d? (d为多项式的阶)
    • E ( s i ) = g s i i = 0 , . . . , d {E(s^i) = g ^{s_i}}_{i=0,...,d} E(si)=gsi?i=0,...,d?发送给prover
  • prover

    • 计算h(x) = P(x)/t(x)
    • 使用 E ( s i ) E(s^i) E(si)和多项式系数c0,…,cd计算 E ( p ( s ) ) = ∏ i = 0 d ( g s i ) c i E(p(s)) = \prod_{i=0}^{d}{{(g^{s_i})}^{c_i}} E(p(s))=i=0d?(gsi?)ci?
    • 同理计算 E ( h ( s ) ) E(h(s)) E(h(s))
    • 生成证明{ E ( p ( s ) ) E(p(s)) E(p(s)) E ( h ( s ) ) E(h(s)) E(h(s)) }
  • verifier

    • 验证等式 E ( p ( s ) ) = ( E ( h ( s ) ) ) t ( s ) E(p(s)) = {(E(h(s)))}^{t(s)} E(p(s))=(E(h(s)))t(s)

该协议解决了随机数s暴露的问题,同时限制了多项式的阶数为d,但无法验证 prover 是否是真的使用了 verifier 提供的值来构造证明

协议三: KCA

  • verifier

    • 选取随机数s, α \alpha α
    • 计算 E ( s i ) = g s i i = 0 , . . . , d {E(s^i) = g ^{s_i}}_{i=0,...,d} E(si)=gsi?i=0,...,d? 以及 E ( α s i ) = g α s i i = 0 , . . . , d {E({\alpha}s^i) = g ^{{\alpha}s_i}}_{i=0,...,d} E(αsi)=gαsi?i=0,...,d?
    • E ( s i ) , E ( α s i ) {E(s^i),E({\alpha}s^i)} E(si)E(αsi)发送给prover
  • prover

    • 计算h(x) = P(x)/t(x)
    • 使用 E ( s i ) , E ( α s i ) {E(s^i),E({\alpha}s^i)} E(si)E(αsi)和多项式系数c0,…,cd计算 E ( p ( s ) ) = ∏ i = 0 d ( g s i ) c i E(p(s)) = \prod_{i=0}^{d}{{(g^{s_i})}^{c_i}} E(p(s))=i=0d?(gsi?)ci? E ( α p ( s ) ) = ∏ i = 0 d ( g α s i ) c i E({\alpha}p(s)) = \prod_{i=0}^{d}{{(g^{{\alpha}s_i})}^{c_i}} E(αp(s))=i=0d?(gαsi?)ci?
    • 同理计算 E ( h ( s ) ) E(h(s)) E(h(s))
    • 生成证明{ E ( p ( s ) ) E(p(s)) E(p(s)) E ( α p ( s ) ) E({\alpha}p(s)) E(αp(s)) E ( h ( s ) ) E(h(s)) E(h(s)) }
  • verifier

    • 验证等式 E ( α p ( s ) ) = ( E ( p ( s ) ) ) α E({\alpha}p(s)) = {(E(p(s)))}^{\alpha} E(αp(s))=(E(p(s)))α

    • 验证等式 E ( p ( s ) ) = ( E ( h ( s ) ) ) t ( s ) E(p(s)) = {(E(h(s)))}^{t(s)} E(p(s))=(E(h(s)))t(s)

该协议限制了 prover 必须使用verifier提供的值进行构造,但这个协议没有保护prover的知识

协议四: 零知识

  • verifier

    • 选取随机数s, α \alpha α
    • 计算 E ( s i ) = g s i i = 0 , . . . , d {E(s^i) = g ^{s_i}}_{i=0,...,d} E(si)=gsi?i=0,...,d? 以及 E ( α s i ) = g α s i i = 0 , . . . , d {E({\alpha}s^i) = g ^{{\alpha}s_i}}_{i=0,...,d} E(αsi)=gαsi?i=0,...,d?
    • E ( s i ) , E ( α s i ) {E(s^i),E({\alpha}s^i)} E(si)E(αsi)发送给prover
  • prover

    • 计算h(x) = P(x)/t(x), 选择随机数 δ \delta δ
    • 使用 E ( s i ) , E ( α s i ) {E(s^i),E({\alpha}s^i)} E(si)E(αsi)和多项式系数c0,…,cd计算 E ( δ p ( s ) ) = ∏ i = 0 d ( g s i ) δ c i E({\delta}p(s)) = \prod_{i=0}^{d}{{(g^{s_i})}^{{\delta}c_i}} E(δp(s))=i=0d?(gsi?)δci? E ( δ α p ( s ) ) = ∏ i = 0 d ( g α s i ) δ c i E({\delta}{\alpha}p(s)) = \prod_{i=0}^{d}{{(g^{{\alpha}s_i})}^{{\delta}c_i}} E(δαp(s))=i=0d?(gαsi?)δci?
    • 同理计算 E ( δ h ( s ) ) E({\delta}h(s)) E(δh(s))
    • 生成证明{ E ( δ p ( s ) ) E({\delta}p(s)) E(δp(s)) E ( δ α p ( s ) ) E({\delta}{\alpha}p(s)) E(δαp(s)) E ( h ( s ) ) E(h(s)) E(h(s)) }
  • verifier

    • 验证等式 E ( δ α p ( s ) ) = ( E ( δ p ( s ) ) ) α E({\delta}{\alpha}p(s)) = {(E({\delta}p(s)))}^{\alpha} E(δαp(s))=(E(δp(s)))α

    • 验证等式 E ( δ p ( s ) ) = ( E ( δ h ( s ) ) ) t ( s ) E({\delta}p(s)) = {(E({\delta}h(s)))}^{t(s)} E(δp(s))=(E(δh(s)))t(s)

该协议通过引入 δ \delta δ 变换 实现了prover的零知识,但该证明是一个交互式证明,即该证明只对此verifier有效,要想所有的 verifier 都相信该证明,需要构造一个可以被重复使用,公开,可信,又不会被滥用的秘密参数

协议五: 非交互式(多项式的零知识证明)

  • setup

    • 选取随机数s, α \alpha α
    • 计算 g α g ^{\alpha} gα { g s i } i = 1... d \{g^{s^i}\}_{i=1...d} {gsi}i=1...d? { g α s i } i = 1... d \{g^{{\alpha}s^i}\}_{i=1...d} {gαsi}i=1...d?
    • 生成proving key { { g s i } i = 1... d \{g^{s^i}\}_{i=1...d} {gsi}i=1...d? { g α s i } i = 1... d \{g^{{\alpha}s^i}\}_{i=1...d} {gαsi}i=1...d? }
    • 生成verification key { g α g ^{\alpha} gα g t ( s ) g ^{t(s)} gt(s)}
  • prover

    • 计算h(x) = P(x)/t(x),选择随机数 δ \delta δ
    • 使用 E ( s i ) , E ( α s i ) {E(s^i),E({\alpha}s^i)} E(si)E(αsi)和多项式系数c0,…,cd计算 E ( δ p ( s ) ) = ∏ i = 0 d ( g s i ) δ c i E({\delta}p(s)) = \prod_{i=0}^{d}{{(g^{s_i})}^{{\delta}c_i}} E(δp(s))=i=0d?(gsi?)δci? E ( δ α p ( s ) ) = ∏ i = 0 d ( g α s i ) δ c i E({\delta}{\alpha}p(s)) = \prod_{i=0}^{d}{{(g^{{\alpha}s_i})}^{{\delta}c_i}} E(δαp(s))=i=0d?(gαsi?)δci?
    • 同理计算 E ( δ h ( s ) ) E({\delta}h(s)) E(δh(s))
    • 生成证明{ E ( δ p ( s ) ) E({\delta}p(s)) E(δp(s)) E ( δ α p ( s ) ) E({\delta}{\alpha}p(s)) E(δαp(s)) E ( h ( s ) ) E(h(s)) E(h(s)) }
  • verifier

    • 证明简写为{ g p , g p ′ , g h g^p,g^{p'}, g^h gp,gp,gh }

    • 验证等式 e ( g p ′ , g ) = e ( g p , g α ) e(g^{p'}, g) = e(g^p, g^{\alpha}) e(gp,g)=e(gp,gα)

    • 验证等式 e ( g p , g ) = e ( g t ( s ) , g h ) e(g^{p}, g) = e(g^{t(s)}, g^h) e(gp,g)=e(gt(s),gh)

该协议实现了一个交互式零知识证明,且该证明只对此verifier有效,要想所有的 verifier 都相信该证明,需要构造一个可以被重复使用,公开,可信,又不会被滥用的秘密参数

协议六: 扩展到一般运算(即QAP上的零知识证明)

∑ i = 0 n { ( v i ? l i ( x ) ) ( v i ? r i ( x ) ) ? ( v i ? o i ( x ) ) } = t ( x ) h ( x ) \sum_{i=0}^{n}\{(v_i*l_i(x))(v_i*r_i(x))-(v_i*o_i(x))\}=t(x)h(x) i=0n?{(vi??li?(x))(vi??ri?(x))?(vi??oi?(x))}=t(x)h(x)

  • setup

    • 选取随机数s, α \alpha α
    • 计算 g α g ^{\alpha} gα { g s k } k = 1... d \{g^{s^k}\}_{k=1...d} {gsk}k=1...d?
    • 计算 { g l i ( s ) , g r i ( s ) , g o i ( s ) , g α l i ( s ) , g α r i ( s ) , g α o i ( s ) } i = 1... n \{{g^{l_i(s)},g^{r_i(s)},g^{o_i(s)},g^{{\alpha}l_i(s)},g^{{\alpha}r_i(s)},g^{{\alpha}o_i(s)}}\}_{i=1...n} {gli?(s),gri?(s),goi?(s),gαli?(s),gαri?(s),gαoi?(s)}i=1...n?
    • 生成proving key { g s k , g l i ( s ) , g r i ( s ) , g o i ( s ) , g α l i ( s ) , g α r i ( s ) , g α o i ( s ) } \{g^{s^k},{g^{l_i(s)},g^{r_i(s)},g^{o_i(s)},g^{{\alpha}l_i(s)},g^{{\alpha}r_i(s)},g^{{\alpha}o_i(s)}}\} {gsk,gli?(s),gri?(s),goi?(s),gαli?(s),gαri?(s),gαoi?(s)}
    • 生成verification key { g α g ^{\alpha} gα g t ( s ) g ^{t(s)} gt(s)}
  • prover

    • 计算h(x) = {L(x)*R(x) -O(x)}/t(x)
    • 计算 g L ( s ) = ∏ i = 0 n ( g l i ( s ) ) v i g^{L(s)} = \prod_{i=0}^{n}{{(g^{l_i(s)})}^{v_i}} gL(s)=i=0n?(gli?(s))vi?, g α L ( s ) = ∏ i = 0 n ( g α l i ( s ) ) v i g^{{\alpha}L(s)} = \prod_{i=0}^{n}{{(g^{{\alpha}l_i(s)})}^{v_i}} gαL(s)=i=0n?(gαli?(s))vi? 其中vi为线性组合的解
    • 同理计算 g R ( s ) g^{R(s)} gR(s), g O ( s ) g^{O(s)} gO(s), g α R ( s ) g^{{\alpha}R(s)} gαR(s), g α O ( s ) g^{{\alpha}O(s)} gαO(s)
    • 利用 g s k g^{s^k} gsk, 计算 g h ( s ) g^{h(s)} gh(s)
    • 生成证明 { g h ( s ) g^{h(s)} gh(s), g L ( s ) g^{L(s)} gL(s), g R ( s ) g^{R(s)} gR(s), g O ( s ) g^{O(s)} gO(s), g α L ( s ) g^{{\alpha}L(s)} gαL(s), g α R ( s ) g^{{\alpha}R(s)} gαR(s), g α O ( s ) g^{{\alpha}O(s)} gαO(s) }
  • verifier

    • 证明简写为 { g h g^{h} gh, g L g^{L} gL, g R g^{R} gR, g O g^{O} gO, g α L g^{{\alpha}L} gαL, g α R g^{{\alpha}R} gαR, g α O g^{{\alpha}O} gαO }

    • 验证等式 e ( g L , g α ) = e ( g α L , g ) e(g^L,g^{\alpha})=e(g^{{\alpha}L},g) e(gL,gα)=e(gαL,g), e ( g R , g α ) = e ( g α R , g ) e(g^R,g^{\alpha})=e(g^{{\alpha}R},g) e(gR,gα)=e(gαR,g), e ( g O , g α ) = e ( g α O , g ) e(g^O,g^{\alpha})=e(g^{{\alpha}O},g) e(gO,gα)=e(gαO,g)

    • 验证等式 e ( g L , g R ) = e ( g t , g h ) e ( g O , g ) e(g^L,g^R)=e(g^t,g^h)e(g^O,g) e(gL,gR)=e(gt,gh)e(gO,g)

该协议实现了一个简单的QAP证明,存在以下两个问题:

  • 操作数和输出的不可交换性

    • L(x)采用R(x)/O(x)的多项式: L′(s) = o?(s) + r?(s) + r?(s) +
    • 输入/输出换位:O(s) * R(s) = L(s)
    • 重用:L(s) * L(s) = O(s)
  • 变量一致性: 保证L(x)、R(x)、O(x) 使用的变量(vi)是相同的

协议七: 不可交换性

  • setup
    • 选取随机数s, α l {\alpha}_l αl? α r {\alpha}_r αr? α o {\alpha}_o αo?
    • 计算 g α l g ^{{\alpha}_l} gαl? g α r g ^{{\alpha}_r} gαr? g α o g ^{{\alpha}_o} gαo? { g s k } k = 1... d \{g^{s^k}\}_{k=1...d} {gsk}k=1...d?
    • 计算 { g l i ( s ) , g r i ( s ) , g o i ( s ) , g α l l i ( s ) , g α r r i ( s ) , g α o o i ( s ) } i = 1... n \{{g^{l_i(s)},g^{r_i(s)},g^{o_i(s)},g^{{\alpha}_ll_i(s)},g^{{\alpha}_rr_i(s)},g^{{\alpha}_oo_i(s)}}\}_{i=1...n} {gli?(s),gri?(s),goi?(s),gαl?li?(s),gαr?ri?(s),gαo?oi?(s)}i=1...n?
    • 生成proving key { g s k , g l i ( s ) , g r i ( s ) , g o i ( s ) , g α l l i ( s ) , g α r r i ( s ) , g α o o i ( s ) } \{g^{s^k},{g^{l_i(s)},g^{r_i(s)},g^{o_i(s)},g^{{\alpha}_ll_i(s)},g^{{\alpha}_rr_i(s)},g^{{\alpha}_oo_i(s)}}\} {gsk,gli?(s),gri?(s),goi?(s),gαl?li?(s),gαr?ri?(s),gαo?oi?(s)}
    • 生成verification key { g α l g ^{{\alpha}_l} gαl? g α r g ^{{\alpha}_r} gαr? g α o g ^{{\alpha}_o} gαo? g t ( s ) g ^{t(s)} gt(s)}
  • prover
    • 计算h(x) = (L(x) · R(x) -O(x))/t(x)
    • 计算 g L ( s ) = ∏ i = 0 n ( g l i ( s ) ) v i g^{L(s)} = \prod_{i=0}^{n}{{(g^{l_i(s)})}^{v_i}} gL(s)=i=0n?(gli?(s))vi?, g α l L ( s ) = ∏ i = 0 n ( g α l l i ( s ) ) v i g^{{\alpha}_lL(s)} = \prod_{i=0}^{n}{{(g^{{\alpha}_ll_i(s)})}^{v_i}} gαl?L(s)=i=0n?(gαl?li?(s))vi? 其中vi为线性组合的解
    • 同理计算 g R ( s ) g^{R(s)} gR(s), g O ( s ) g^{O(s)} gO(s), g α r R ( s ) g^{{\alpha}_rR(s)} gαr?R(s), g α o O ( s ) g^{{\alpha}_oO(s)} gαo?O(s)
    • 利用 g s k g^{s^k} gsk, 计算 g h ( s ) g^{h(s)} gh(s)
    • 生成证明 { g h ( s ) g^{h(s)} gh(s), g L ( s ) g^{L(s)} gL(s), g R ( s ) g^{R(s)} gR(s), g O ( s ) g^{O(s)} gO(s), g α l L ( s ) g^{{\alpha}_lL(s)} gαl?L(s), g α r R ( s ) g^{{\alpha}_rR(s)} gαr?R(s), g α o O ( s ) g^{{\alpha}_oO(s)} gαo?O(s) }
  • verifier
    • 证明简写为 { g h g^{h} gh, g L g^{L} gL, g R g^{R} gR, g O g^{O} gO, g α l L g^{{\alpha}_lL} gαl?L, g α r R g^{{\alpha}_rR} gαr?R, g α o O g^{{\alpha}_oO} gαo?O }
    • 验证等式 e ( g L , g α l ) = e ( g α l L , g ) e(g^L,g^{{\alpha}_l})=e(g^{{\alpha}_lL},g) e(gL,gαl?)=e(gαl?L,g), e ( g R , g α r ) = e ( g α r R , g ) e(g^R,g^{{\alpha}_r})=e(g^{{\alpha}_rR},g) e(gR,gαr?)=e(gαr?R,g), e ( g O , g α o ) = e ( g α o O , g ) e(g^O,g^{{\alpha}_o})=e(g^{{\alpha}_oO},g) e(gO,gαo?)=e(gαo?O,g)
    • 验证等式 e ( g L , g R ) = e ( g t , g h ) e ( g O , g ) e(g^L,g^R)=e(g^t,g^h)e(g^O,g) e(gL,gR)=e(gt,gh)e(gO,g)

该协议对li(s),ri(s),oi(s)使用不同的 α {\alpha} α保证了操作数和输出的不可交换性

协议八: 变量一致性

  • setup
    • 选取随机数s, α l {\alpha}_l αl? α r {\alpha}_r αr? α o {\alpha}_o αo? β l {\beta}_l βl? β r {\beta}_r βr? β o {\beta}_o βo?
    • 计算 g α l g ^{{\alpha}_l} gαl? g α r g ^{{\alpha}_r} gαr? g α o g ^{{\alpha}_o} gαo? g β l g ^{{\beta}_l} gβl? g β r g ^{{\beta}_r} gβr? g β o g ^{{\beta}_o} gβo? { g s k } k = 1... d \{g^{s^k}\}_{k=1...d} {gsk}k=1...d?
    • 计算 { g l i ( s ) , g r i ( s ) , g o i ( s ) , g α l l i ( s ) , g α r r i ( s ) , g α o o i ( s ) } i = 1... n \{{g^{l_i(s)},g^{r_i(s)},g^{o_i(s)},g^{{\alpha}_ll_i(s)},g^{{\alpha}_rr_i(s)},g^{{\alpha}_oo_i(s)}}\}_{i=1...n} {gli?(s),gri?(s),goi?(s),gαl?li?(s),gαr?ri?(s),gαo?oi?(s)}i=1...n?
    • 计算 g β l l i ( s ) + β r r i ( s ) + β o o i ( s ) g^{{\beta}_ll_i(s)+{\beta}_rr_i(s)+{\beta}_oo_i(s)} gβl?li?(s)+βr?ri?(s)+βo?oi?(s)
    • 生成proving key { g s k , g l i ( s ) , g r i ( s ) , g o i ( s ) , g α l l i ( s ) , g α r r i ( s ) , g α o o i ( s ) , g β l l i ( s ) + β r r i ( s ) + β o o i ( s ) } \{g^{s^k},{g^{l_i(s)},g^{r_i(s)},g^{o_i(s)},g^{{\alpha}_ll_i(s)},g^{{\alpha}_rr_i(s)},g^{{\alpha}_oo_i(s)},g^{{\beta}_ll_i(s)+{\beta}_rr_i(s)+{\beta}_oo_i(s)}}\} {gsk,gli?(s),gri?(s),goi?(s),gαl?li?(s),gαr?ri?(s),gαo?oi?(s),gβl?li?(s)+βr?ri?(s)+βo?oi?(s)}
    • 生成verification key { g α l g ^{{\alpha}_l} gαl? g α r g ^{{\alpha}_r} gαr? g α o g ^{{\alpha}_o} gαo? g t ( s ) g ^{t(s)} gt(s), g β l g ^{{\beta}_l} gβl?, g β r g ^{{\beta}_r} gβr?, g β o g ^{{\beta}_o} gβo?}
  • prover
    • 计算h(x) = (L(x) · R(x) -O(x))/t(x)
    • 计算 g L ( s ) = ∏ i = 0 n ( g l i ( s ) ) v i g^{L(s)} = \prod_{i=0}^{n}{{(g^{l_i(s)})}^{v_i}} gL(s)=i=0n?(gli?(s))vi?, g α l L ( s ) = ∏ i = 0 n ( g α l l i ( s ) ) v i g^{{\alpha}_lL(s)} = \prod_{i=0}^{n}{{(g^{{\alpha}_ll_i(s)})}^{v_i}} gαl?L(s)=i=0n?(gαl?li?(s))vi? 其中vi为线性组合的解
    • 同理计算 g R ( s ) g^{R(s)} gR(s), g O ( s ) g^{O(s)} gO(s), g α r R ( s ) g^{{\alpha}_rR(s)} gαr?R(s), g α o O ( s ) g^{{\alpha}_oO(s)} gαo?O(s)
    • 利用 g s k g^{s^k} gsk, 计算 g h ( s ) g^{h(s)} gh(s)
    • 计算 g Z ( s ) = ∏ i = 0 n ( g β l l i ( s ) + β r r i ( s ) + β o o i ( s ) ) v i g^{Z_(s)} = \prod_{i=0}^{n}{(g^{{\beta}_ll_i(s)+{\beta}_rr_i(s)+{\beta}_oo_i(s)})^{v_i}} gZ(?s)=i=0n?(gβl?li?(s)+βr?ri?(s)+βo?oi?(s))vi?
    • 生成证明 { g h ( s ) g^{h(s)} gh(s), g L ( s ) g^{L(s)} gL(s), g R ( s ) g^{R(s)} gR(s), g O ( s ) g^{O(s)} gO(s), g α l L ( s ) g^{{\alpha}_lL(s)} gαl?L(s), g α r R ( s ) g^{{\alpha}_rR(s)} gαr?R(s), g α o O ( s ) g^{{\alpha}_oO(s)} gαo?O(s), $g^{Z_(s)} $ }
  • verifier
    • 证明简写为 { g h g^{h} gh, g L g^{L} gL, g R g^{R} gR, g O g^{O} gO, g α l L g^{{\alpha}_lL} gαl?L, g α r R g^{{\alpha}_rR} gαr?R, g α o O g^{{\alpha}_oO} gαo?O,$g^{Z} $ }
    • 验证等式 e ( g L , g α l ) = e ( g α l L , g ) e(g^L,g^{{\alpha}_l})=e(g^{{\alpha}_lL},g) e(gL,gαl?)=e(gαl?L,g), e ( g R , g α r ) = e ( g α r R , g ) e(g^R,g^{{\alpha}_r})=e(g^{{\alpha}_rR},g) e(gR,gαr?)=e(gαr?R,g), e ( g O , g α o ) = e ( g α o O , g ) e(g^O,g^{{\alpha}_o})=e(g^{{\alpha}_oO},g) e(gO,gαo?)=e(gαo?O,g)
    • 验证等式 e ( g L , g β l ) ? e ( g R , g β r ) ? e ( g O , g β o ) = e ( g Z , g ) e(g^L,g^{{\beta}_l}) ·e(g^R,g^{{\beta}_r}) ·e(g^O,g^{{\beta}_o})=e(g^Z,g) e(gL,gβl?)?e(gR,gβr?)?e(gO,gβo?)=e(gZ,g)
    • 验证等式 e ( g L , g R ) = e ( g t , g h ) e ( g O , g ) e(g^L,g^R)=e(g^t,g^h)e(g^O,g) e(gL,gR)=e(gt,gh)e(gO,g)

该协议对li(s),ri(s),oi(s)使用不同的 β {\beta} β保证了变量的一致性;

通过协议七和协议八分别解决了不可交换性和变量的一致性,但仍然以下问题:

  • 多项式的延展性:对于证明中的 g L g^{L} gL ,可以计算 g L ? g 5 = g L + 5 g^{L}·g^{5} = g^{L+5} gL?g5=gL+5,由于知道 g α l g ^{{\alpha}_l} gαl?,可以计算 g α l L ? g α l 5 = g α l ( L + 5 ) g^{{\alpha}_lL}·g^{{\alpha}_l5} = g^{{\alpha}_l(L+5)} gαl?L?gαl?5=gαl?(L+5),从而 e ( g L + 5 , g α l ) = e ( g α l ( L + 5 ) , g ) e(g^{L+5},g^{{\alpha}_l})=e(g^{{\alpha}_l(L+5)},g) e(gL+5,gαl?)=e(gαl?(L+5),g) 验证通过
  • 变量的延展性: 同理 e ( g L + 5 , g β l ) ? e ( g R , g β r ) ? e ( g O , g β o ) = e ( g Z ? g β l 5 , g ) e(g^{L+5},g^{{\beta}_l}) ·e(g^R,g^{{\beta}_r}) ·e(g^O,g^{{\beta}_o})=e(g^Z ·g^{{\beta}_l5},g) e(gL+5,gβl?)?e(gR,gβr?)?e(gO,gβo?)=e(gZ?gβl?5,g) 可验证通过

协议九: 非延展性

  • setup

    • 选取随机数s, α l {\alpha}_l αl? α r {\alpha}_r αr? α o {\alpha}_o αo? β l {\beta}_l βl? β r {\beta}_r βr? β o {\beta}_o βo? γ {\gamma} γ
    • 计算 g α l g ^{{\alpha}_l} gαl? g α r g ^{{\alpha}_r} gαr? g α o g ^{{\alpha}_o} gαo? g β l g ^{{\beta}_l} gβl? g β r g ^{{\beta}_r} gβr? g β o g ^{{\beta}_o} gβo? { g s k } k = 1... d \{g^{s^k}\}_{k=1...d} {gsk}k=1...d?
    • 计算 { g l i ( s ) , g r i ( s ) , g o i ( s ) , g α l l i ( s ) , g α r r i ( s ) , g α o o i ( s ) } i = 1... n \{{g^{l_i(s)},g^{r_i(s)},g^{o_i(s)},g^{{\alpha}_ll_i(s)},g^{{\alpha}_rr_i(s)},g^{{\alpha}_oo_i(s)}}\}_{i=1...n} {gli?(s),gri?(s),goi?(s),gαl?li?(s),gαr?ri?(s),gαo?oi?(s)}i=1...n?
    • 计算 g β l l i ( s ) + β r r i ( s ) + β o o i ( s ) g^{{\beta}_ll_i(s)+{\beta}_rr_i(s)+{\beta}_oo_i(s)} gβl?li?(s)+βr?ri?(s)+βo?oi?(s)
    • 生成proving key { g s k , g l i ( s ) , g r i ( s ) , g o i ( s ) , g α l l i ( s ) , g α r r i ( s ) , g α o o i ( s ) , g β l l i ( s ) + β r r i ( s ) + β o o i ( s ) } \{g^{s^k},{g^{l_i(s)},g^{r_i(s)},g^{o_i(s)},g^{{\alpha}_ll_i(s)},g^{{\alpha}_rr_i(s)},g^{{\alpha}_oo_i(s)},g^{{\beta}_ll_i(s)+{\beta}_rr_i(s)+{\beta}_oo_i(s)}}\} {gsk,gli?(s),gri?(s),goi?(s),gαl?li?(s),gαr?ri?(s),gαo?oi?(s),gβl?li?(s)+βr?ri?(s)+βo?oi?(s)}
    • 生成verification key { g α l g ^{{\alpha}_l} gαl? g α r g ^{{\alpha}_r} gαr? g α o g ^{{\alpha}_o} gαo? g t ( s ) g ^{t(s)} gt(s), g β l γ g ^{{\beta}_l{\gamma}} gβl?γ, g β r γ g ^{{\beta}_r{\gamma}} gβr?γ, g β o γ g ^{{\beta}_o{\gamma}} gβo?γ g γ g ^{{\gamma}} gγ}
  • prover

    • 计算h(x) = (L(x) · R(x) -O(x))/t(x)
    • 计算 g L ( s ) = ∏ i = 0 n ( g l i ( s ) ) v i g^{L(s)} = \prod_{i=0}^{n}{{(g^{l_i(s)})}^{v_i}} gL(s)=i=0n?(gli?(s))vi?, g α l L ( s ) = ∏ i = 0 n ( g α l l i ( s ) ) v i g^{{\alpha}_lL(s)} = \prod_{i=0}^{n}{{(g^{{\alpha}_ll_i(s)})}^{v_i}} gαl?L(s)=i=0n?(gαl?li?(s))vi? 其中vi为线性组合的解
    • 同理计算 g R ( s ) g^{R(s)} gR(s), g O ( s ) g^{O(s)} gO(s), g α r R ( s ) g^{{\alpha}_rR(s)} gαr?R(s), g α o O ( s ) g^{{\alpha}_oO(s)} gαo?O(s)
    • 利用 g s k g^{s^k} gsk, 计算 g h ( s ) g^{h(s)} gh(s)
    • 计算 g Z ( s ) = ∏ i = 0 n ( g β l l i ( s ) + β r r i ( s ) + β o o i ( s ) ) v i g^{Z_(s)} = \prod_{i=0}^{n}{(g^{{\beta}_ll_i(s)+{\beta}_rr_i(s)+{\beta}_oo_i(s)})^{v_i}} gZ(?s)=i=0n?(gβl?li?(s)+βr?ri?(s)+βo?oi?(s))vi?
    • 生成证明 { g h ( s ) g^{h(s)} gh(s), g L ( s ) g^{L(s)} gL(s), g R ( s ) g^{R(s)} gR(s), g O ( s ) g^{O(s)} gO(s), g α l L ( s ) g^{{\alpha}_lL(s)} gαl?L(s), g α r R ( s ) g^{{\alpha}_rR(s)} gαr?R(s), g α o O ( s ) g^{{\alpha}_oO(s)} gαo?O(s), $g^{Z_(s)} $ }
  • verifier

    • 证明简写为 { g h g^{h} gh, g L g^{L} gL, g R g^{R} gR, g O g^{O} gO, g α l L g^{{\alpha}_lL} gαl?L, g α r R g^{{\alpha}_rR} gαr?R, g α o O g^{{\alpha}_oO} gαo?O,$g^{Z} $ }

    • 验证等式 e ( g L , g α l ) = e ( g α l L , g ) e(g^L,g^{{\alpha}_l})=e(g^{{\alpha}_lL},g) e(gL,gαl?)=e(gαl?L,g), e ( g R , g α r ) = e ( g α r R , g ) e(g^R,g^{{\alpha}_r})=e(g^{{\alpha}_rR},g) e(gR,gαr?)=e(gαr?R,g), e ( g O , g α o ) = e ( g α o O , g ) e(g^O,g^{{\alpha}_o})=e(g^{{\alpha}_oO},g) e(gO,gαo?)=e(gαo?O,g)

    • 验证等式 e ( g L , g β l γ ) ? e ( g R , g β r γ ) ? e ( g O , g β o γ ) = e ( g Z , g γ ) e(g^L,g^{{\beta}_l{\gamma}}) ·e(g^R,g^{{\beta}_r{\gamma}}) ·e(g^O,g^{{\beta}_o{\gamma}})=e(g^Z,g^{\gamma}) e(gL,gβl?γ)?e(gR,gβr?γ)?e(gO,gβo?γ)=e(gZ,gγ)

    • 验证等式 e ( g L , g R ) = e ( g t , g h ) e ( g O , g ) e(g^L,g^R)=e(g^t,g^h)e(g^O,g) e(gL,gR)=e(gt,gh)e(gO,g)

协议十: 变量一致性的优化(双线性对运算 和verification key的优化)

  • setup
    • 选取随机数s, α l {\alpha}_l αl? α r {\alpha}_r αr? α o {\alpha}_o αo? β {\beta} β γ {\gamma} γ p l , p r , p o = p l ? p r p_l,p_r, p_o =p_l·p_r pl?,pr?,po?=pl??pr?
    • 设置生成元 g l = g p l g_l= g^{p_l} gl?=gpl?, g r = g p r g_r= g^{p_r} gr?=gpr?, g 0 = g p o g_0= g^{p_o} g0?=gpo?
    • 计算 g l β l i ( s ) g_l^{{\beta}l_i(s)} glβli?(s)?, g r β r i ( s ) g_r^{{\beta}r_i(s)} grβri?(s)?, g o β o i ( s ) g_o^{{\beta}o_i(s)} goβoi?(s)?
    • 计算 g α l g ^{{\alpha}_l} gαl? g α r g ^{{\alpha}_r} gαr? g α o g ^{{\alpha}_o} gαo? { g s k } k = 1... d \{g^{s^k}\}_{k=1...d} {gsk}k=1...d?
    • 计算 { g l i ( s ) , g r i ( s ) , g o i ( s ) , g α l l i ( s ) , g α r r i ( s ) , g α o o i ( s ) } i = 1... n \{{g^{l_i(s)},g^{r_i(s)},g^{o_i(s)},g^{{\alpha}_ll_i(s)},g^{{\alpha}_rr_i(s)},g^{{\alpha}_oo_i(s)}}\}_{i=1...n} {gli?(s),gri?(s),goi?(s),gαl?li?(s),gαr?ri?(s),gαo?oi?(s)}i=1...n?
    • 生成proving key { g s k , g l i ( s ) , g r i ( s ) , g o i ( s ) , g α l l i ( s ) , g α r r i ( s ) , g α o o i ( s ) , g l β l i ( s ) , g r β r i ( s ) , g o β o i ( s ) } \{g^{s^k},{g^{l_i(s)},g^{r_i(s)},g^{o_i(s)},g^{{\alpha}_ll_i(s)},g^{{\alpha}_rr_i(s)},g^{{\alpha}_oo_i(s)},g_l^{{\beta}l_i(s)}, g_r^{{\beta}r_i(s)},g_o^{{\beta}o_i(s)}}\} {gsk,gli?(s),gri?(s),goi?(s),gαl?li?(s),gαr?ri?(s),gαo?oi?(s),glβli?(s)?,grβri?(s)?,goβoi?(s)?}
    • 生成verification key { g α l g ^{{\alpha}_l} gαl? g α r g ^{{\alpha}_r} gαr? g α o g ^{{\alpha}_o} gαo? g o t ( s ) g_o ^{t(s)} got(s)?, g β γ g ^{{\beta}{\gamma}} gβγ g γ g ^{{\gamma}} gγ}
  • prover
    • 计算h(x) = (L(x) · R(x) -O(x))/t(x)
    • 计算 g L ( s ) = ∏ i = 0 n ( g l i ( s ) ) v i g^{L(s)} = \prod_{i=0}^{n}{{(g^{l_i(s)})}^{v_i}} gL(s)=i=0n?(gli?(s))vi?, g α l L ( s ) = ∏ i = 0 n ( g α l l i ( s ) ) v i g^{{\alpha}_lL(s)} = \prod_{i=0}^{n}{{(g^{{\alpha}_ll_i(s)})}^{v_i}} gαl?L(s)=i=0n?(gαl?li?(s))vi? 其中vi为线性组合的解
    • 同理计算 g R ( s ) g^{R(s)} gR(s), g O ( s ) g^{O(s)} gO(s), g α r R ( s ) g^{{\alpha}_rR(s)} gαr?R(s), g α o O ( s ) g^{{\alpha}_oO(s)} gαo?O(s)
    • 利用 g s k g^{s^k} gsk, 计算 g h ( s ) g^{h(s)} gh(s)
    • 计算 g Z ( s ) = ∏ i = 0 n ( g l β l i ( s ) ? g r β r i ( s ) ? g o β o i ( s ) ) v i g^{Z_(s)} = \prod_{i=0}^{n}{(g_l^{{\beta}l_i(s)}·g_r^{{\beta}r_i(s)}·g_o^{{\beta}o_i(s)})^{v_i}} gZ(?s)=i=0n?(glβli?(s)??grβri?(s)??goβoi?(s)?)vi?
    • 生成证明 { g h ( s ) g^{h(s)} gh(s), g L ( s ) g^{L(s)} gL(s), g R ( s ) g^{R(s)} gR(s), g O ( s ) g^{O(s)} gO(s), g α l L ( s ) g^{{\alpha}_lL(s)} gαl?L(s), g α r R ( s ) g^{{\alpha}_rR(s)} gαr?R(s), g α o O ( s ) g^{{\alpha}_oO(s)} gαo?O(s), $g^{Z_(s)} $ }
  • verifier
    • 证明简写为 { g h g^{h} gh, g L g^{L} gL, g R g^{R} gR, g O g^{O} gO, g α l L g^{{\alpha}_lL} gαl?L, g α r R g^{{\alpha}_rR} gαr?R, g α o O g^{{\alpha}_oO} gαo?O,$g^{Z} $ }
    • 多项式的不可变换检查: e ( g L , g α l ) = e ( g α l L , g ) e(g^L,g^{{\alpha}_l})=e(g^{{\alpha}_lL},g) e(gL,gαl?)=e(gαl?L,g), e ( g R , g α r ) = e ( g α r R , g ) e(g^R,g^{{\alpha}_r})=e(g^{{\alpha}_rR},g) e(gR,gαr?)=e(gαr?R,g), e ( g O , g α o ) = e ( g α o O , g ) e(g^O,g^{{\alpha}_o})=e(g^{{\alpha}_oO},g) e(gO,gαo?)=e(gαo?O,g)
    • 变量一致性检查 e ( g l L ? g r R ? g o O , g β γ ) = e ( g Z , g γ ) e(g_l^L·g_r^R·g_o^O,g^{{\beta}{\gamma}}) =e(g^Z,g^{\gamma}) e(glL??grR??goO?,gβγ)=e(gZ,gγ)
    • 计算有效性检查 e ( g l L , g r R ) = e ( g o t , g h ) ? e ( g o O , g ) e(g_l^L,g_r^R) =e(g_o^t,g^h)·e(g_o^O,g) e(glL?,grR?)=e(got?,gh)?e(goO?,g)
  区块链 最新文章
盘点具备盈利潜力的几大加密板块,以及潜在
阅读笔记|让区块空间成为商品,打造Web3云
区块链1.0-比特币的数据结构
Team Finance被黑分析|黑客自建Token“瞒天
区块链≠绿色?波卡或成 Web3“生态环保”标
期货从入门到高深之手动交易系列D1课
以太坊基础---区块验证
进入以太坊合并的五个数字
经典同态加密算法Paillier解读 - 原理、实现
IPFS/Filecoin学习知识科普(四)
上一篇文章      下一篇文章      查看所有文章
加:2022-03-30 18:28:45  更:2022-03-30 18:30:26 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/25 23:28:32-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码