IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> ElasticSearch的优化 -> 正文阅读

[大数据]ElasticSearch的优化

一、硬件选择

Elasticsearch 的基础是 Lucene,所有的索引和文档数据是存储在本地的磁盘中,具体的
路径可在 ES 的配置文件config/elasticsearch.yml 中配置,如下:请添加图片描述
磁盘在现代服务器上通常都是瓶颈。Elasticsearch 重度使用磁盘,你的磁盘能处理的吞吐量越大,你的节点就越稳定。这里有一些优化磁盘 I/O 的技巧:

  • 使用 SSD。就像其他地方提过的, 他们比机械磁盘优秀多了。
  • 使用 RAID 0。条带化 RAID 会提高磁盘 I/O,代价显然就是当一块硬盘故障时整个就故障了。不要使用镜像或者奇偶校验 RAID 因为副本已经提供了这个功能。
  • 另外,使用多块硬盘,并允许 Elasticsearch 通过多个 path.data 目录配置把数据条带化分配到它们上面。
  • 不要使用远程挂载的存储,比如 NFS 或者 SMB/CIFS。这个引入的延迟对性能来说完全是背道而驰的。

二、 分片策略

1.合理设置分片数

分片和副本的设计为 ES 提供了支持分布式和故障转移的特性,但并不意味着分片和副本是可以无限分配的,下面就是其原因:

  • 一个分片的底层即为一个 Lucene 索引,会消耗一定文件句柄、内存、以及 CPU 运转。
  • 每一个搜索请求都需要命中索引中的每一个分片,如果每一个分片都处于不同的节点还好, 但如果多个分片都需要在同一个节点上竞争使用相同的资源就有些糟糕了。
  • 用于计算相关度的词项统计信息是基于分片的。如果有许多分片,每一个都只有很少的数据会导致很低的相关度。

一个业务索引具体需要分配多少分片可能需要架构师和技术人员对业务的增长有个预先的判断,横向扩展应当分阶段进行。为下一阶段准备好足够的资源。 只有当你进入到下一个阶段,你才有时间思考需要作出哪些改变来达到这个阶段。一般来说,我们遵循下面的原则:

  • 控制每个分片占用的硬盘容量不超过 ES 的最大 JVM 的堆空间设置(一般设置不超过32G,参考下文的 JVM 设置原则),因此,如果索引的总容量在 500G 左右,那分片大小在 16 个左右即可;当然,最好同时考虑原则 2。
  • 考虑一下 node 数量,一般一个节点有时候就是一台物理机,如果分片数过多,大大超过了节点数,很可能会导致一个节点上存在多个分片,一旦该节点故障,即使保持了 1 个以上的副本,同样有可能会导致数据丢失,集群无法恢复。所以, 一般都设置分片数不超过节点数的 3 倍。
  • 主分片,副本和节点最大数之间数量,我们分配的时候可以参考以下关系:
    节点数<=主分片数*(副本数+1)

2.推迟分片分配

对于节点瞬时中断的问题,默认情况,集群会等待一分钟来查看节点是否会重新加入,如果这个节点在此期间重新加入,重新加入的节点会保持其现有的分片数据,不会触发新的分片分配。这样就可以减少 ES 在自动再平衡可用分片时所带来的极大开销。
通过修改参数 delayed_timeout ,可以延长再均衡的时间,可以全局设置也可以在索引级别进行修改:

PUT /_all/_settings 
{
	"settings": {
		"index.unassigned.node_left.delayed_timeout": "5m" 
	} 
}

三、路由选择

路由计算的公式如下:
shard = hash(routing) % number_of_primary_shards
routing 默认值是文档的 id,也可以采用自定义值,比如用户 id。
根据项目需求,可以考虑下面的两种查询方式:

1.不带 routing 查询

在查询的时候因为不知道要查询的数据具体在哪个分片上,所以整个过程分为 2 个步骤:

  • 分发:请求到达协调节点后,协调节点将查询请求分发到每个分片上。
  • 聚合: 协调节点搜集到每个分片上查询结果,在将查询的结果进行排序,之后给用户返回结果。

2.带 routing 查询

查询的时候,可以直接根据 routing 信息定位到某个分配查询,不需要查询所有的分配,经过协调节点排序。向上面自定义的用户查询,如果 routing 设置为 userid 的话,就可以直接查询出数据来,效率提升很多。

四、写入速度优化

针对于搜索性能要求不高,但是对写入要求较高的场景,我们需要尽可能的选择恰当写优化策略。综合来说,可以考虑以下几个方面来提升写索引的性能:

  • 加大 Translog Flush ,目的是降低 Iops、Writeblock。
  • 增加 Index Refresh 间隔,目的是减少 Segment Merge 的次数。
  • 调整 Bulk 线程池和队列。
  • 优化节点间的任务分布。
  • 优化 Lucene 层的索引建立,目的是降低 CPU 及 IO。

1.批量数据提交

通用的策略如下:Bulk 默认设置批量提交的数据量不能超过 100M。数据条数一般是根据文档的大小和服务器性能而定的,但是单次批处理的数据大小应从 5MB~15MB 逐渐增加,当性能没有提升时,把这个数据量作为最大值。

2.合理使用合并

Lucene 以段的形式存储数据。当有新的数据写入索引时,Lucene 就会自动创建一个新的段。随着数据量的变化,段的数量会越来越多,消耗的多文件句柄数及 CPU 就越多,查询效率就会下降。由于 Lucene 段合并的计算量庞大,会消耗大量的 I/O,所以 ES 默认采用较保守的策略,让后台定期进行段合并。

3.减少 Refresh 的次数

Lucene 在新增数据时,采用了延迟写入的策略,默认情况下索引的 refresh_interval 为1 秒。Lucene 将待写入的数据先写到内存中,超过 1 秒(默认)时就会触发一次 Refresh,然后 Refresh 会把内存中的的数据刷新到操作系统的文件缓存系统中。
如果我们对搜索的实效性要求不高,可以将 Refresh 周期延长,例如 30 秒。这样还可以有效地减少段刷新次数,但这同时意味着需要消耗更多的 Heap 内存。

4.加大 Flush 设置

Flush 的主要目的是把文件缓存系统中的段持久化到硬盘,当 Translog 的数据量达到512MB 或者 30 分钟时,会触发一次 Flush。
index.translog.flush_threshold_size 参数的默认值是 512MB,我们进行修改。增加参数值意味着文件缓存系统中可能需要存储更多的数据,所以我们需要为操作系统的文件缓存系统留下足够的空间。

5.减少副本的数量

ES 为了保证集群的可用性,提供了 Replicas(副本)支持,然而每个副本也会执行分析、索引及可能的合并过程,所以 Replicas 的数量会严重影响写索引的效率。
如 果 我 们 需 要 大 批 量 进 行 写 入 操 作 , 可 以 先 禁 止 Replica 复 制 , 设 置index.number_of_replicas: 0 关闭副本。在写入完成后,Replica 修改回正常的状态。

五、内存设置

ES 默认安装后设置的内存是 1GB,对于任何一个现实业务来说,这个设置都太小了。
ES 堆内存的分配需要满足以下两个原则:

  • 不要超过物理内存的 50%
  • 堆内存的大小最好不要超过 32GB

最终我们都会采用 31 G 设置,具体修改方法如下:
在ES的解压文件中找到config目录下的jvm.options文件
请添加图片描述
里面直接添加下面的配置:

-Xms 31g
-Xmx 31g

假设你有个机器有 128 GB 的内存,你可以创建两个节点,每个节点内存分配不超过 32 GB。也就是说不超过 64 GB 内存给 ES 的堆内存,剩下的超过 64 GB 的内存给 Lucene

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2021-07-29 11:43:03  更:2021-07-29 11:44:50 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/22 23:41:26-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码