大数据技术之Yarn
第 1 章 Yarn资源调度器
Yarn 是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,而 MapReduce 等运算程序则相当于运行于操作系统之上的应用程序。
1.1 Yarn 基础架构
YARN 主要由 ResourceManager、NodeManager、ApplicationMaster 和 Container 等组件构成。 
1.2 Yarn 工作机制

- MR 程序提交到客户端所在的节点。
- YarnRunner 向 ResourceManager 申请一个 Application。
- RM 将该应用程序的资源路径返回给 YarnRunner。
- 该程序将运行所需资源提交到 HDFS 上。
- 程序资源提交完毕后,申请运行 mrAppMaster。
- RM 将用户的请求初始化成一个 Task。
- 其中一个 NodeManager 领取到 Task 任务。
- 该 NodeManager 创建容器 Container,并产生 MRAppmaster。
- Container 从 HDFS 上拷贝资源到本地。
- MRAppmaster 向 RM 申请运行 MapTask 资源。
- RM 将运行 MapTask 任务分配给另外两个 NodeManager,另两个 NodeManager 分别领取任务并创建容器。
- MR 向两个接收到任务的 NodeManager 发送程序启动脚本,这两个 NodeManager分别启动 MapTask,MapTask 对数据分区排序。
- MrAppMaster等待所有MapTask运行完毕后,向RM申请容器,运行ReduceTask。
- ReduceTask 向 MapTask 获取相应分区的数据。
- 程序运行完毕后,MR 会向 RM 申请注销自己。
1.3 作业提交全过程

-
作业提交过程之YARN  -
作业提交过程之HDFS & MapReduce ![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-75jlioK3-1627530300261)(img/1616501263865.png)]](https://img-blog.csdnimg.cn/d880aaa651914a3594bb361cba502c9e.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pqZjE2NjUxMTk4MDM=,size_16,color_FFFFFF,t_70) -
作业提交全过程详解 (1)作业提交
- Client 调用 job.waitForCompletion 方法,向整个集群提交 MapReduce 作业。
- Client 向 RM 申请一个作业 id。
- RM 给 Client 返回该 job 资源的提交路径和作业 id。
- Client 提交 jar 包、切片信息和配置文件到指定的资源提交路径。
- Client 提交完资源后,向 RM 申请运行 MrAppMaster。
(2)作业初始化
- 当 RM 收到 Client 的请求后,将该 job 添加到容量调度器中。
- 某一个空闲的 NM 领取到该 Job。
- 该 NM 创建 Container,并产生 MRAppmaster。
- 下载 Client 提交的资源到本地。
(3)任务分配
- MrAppMaster 向 RM 申请运行多个 MapTask 任务资源。
- RM 将运行 MapTask 任务分配给另外两个 NodeManager,另两个 NodeManager分别领取任务并创建容器。
(4)任务运行
- MR 向两个接收到任务的 NodeManager 发送程序启动脚本,这两个NodeManager 分别启动 MapTask,MapTask 对数据分区排序。
- MrAppMaster等待所有MapTask运行完毕后,向RM申请容器,运行ReduceTask。
- ReduceTask 向 MapTask 获取相应分区的数据。
- 程序运行完毕后,MR 会向 RM 申请注销自己。
(5)进度和状态更新
- YARN 中的任务将其进度和状态(包括 counter)返回给应用管理器, 客户端每秒(通过mapreduce.client.progressmonitor.pollinterval 设置)向应用管理器请求进度更新, 展示给用户。
(6)作业完成
- 除了向应用管理器请求作业进度外, 客户端每 5 秒都会通过调用 waitForCompletion()来检查作业是否完成。时间间隔可以通过 mapreduce.client.completion.pollinterval 来设置。作业完成之后, 应用管理器和 Container 会清理工作状态。作业的信息会被作业历史服务器存储以备之后用户核查。
1.4 Yarn 调度器和调度算法
目前,Hadoop 作业调度器主要有三种:FIFO、容量(Capacity Scheduler)和公平(FairScheduler)。Apache Hadoop3.1.3 默认的资源调度器是 Capacity Scheduler。
CDH 框架默认调度器是 Fair Scheduler。 具体设置详见:yarn-default.xml 文件
<property>
<description>The class to use as the resource scheduler.</description>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler .capacity.CapacityScheduler</value>
</property>
1.4.1 先进先出调度器(FIFO)
FIFO 调度器(First In First Out):单队列,根据提交作业的先后顺序,先来先服务。  优点:简单易懂; 缺点:不支持多队列,生产环境很少使用
1.4.2 容量调度器(Capacity Scheduler )
Capacity Scheduler 是 Yahoo 开发的多用户调度器。
- 容量调度器特点:

- 多队列:每个队列可配置一定的资源量,每个队列采用FIFO调度策略。
- 容量保证:管理员可为每个队列设置资源最低保证和资源使用上限
- 灵活性:如果一个队列中的资源有剩余,可以暂时共享给那些需要资源的队列,而一旦该队列有新的应用程序提交,则其他队列借调的资源会归还给该队列。
- 多租户:
支持多用户共享集群和多应用程序同时运行。 为了防止同一个用户的作业独占队列中的资源,该调度器会对同一用户提交的作业所占资源量进行限定。
- 容量调度器资源分配算法
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wApq0MmM-1627530300264)(img/1616502281989.png)]](https://img-blog.csdnimg.cn/5ed97126feff464d9644da6309fd02c6.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pqZjE2NjUxMTk4MDM=,size_16,color_FFFFFF,t_70)
1.4.3 公平调度器(Fair Scheduler )
Fair Schedulere 是 Facebook 开发的多用户调度器。
公平调度器特点:  公平调度器——缺额  公平调度器队列资源分配方式  公平调度器资源分配算法  公平调度器队列资源分配方式  
1.5 Yarn 常用命令
Yarn 状态的查询,除了可以在 hadoop103:8088 页面查看外,还可以通过命令操作。常见的命令操作如下所示: 需求:执行 WordCount 案例,并用 Yarn 命令查看任务运行情况。
[atguigu@hadoop102 hadoop-3.1.3]$ myhadoop.sh start
[atguigu@hadoop102 hadoop-3.1.3]$ hadoop jar
share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount /input /output
1.5.1 yarn application 查看任务
-
列出所有 Application: [atguigu@hadoop102 hadoop-3.1.3]$ yarn application -list
2021-02-06 10:21:19,238 INFO client.RMProxy: Connecting to ResourceManager
at hadoop103/192.168.10.103:8032
Total number of applications (application-types: [], states: [SUBMITTED,
ACCEPTED, RUNNING] and tags: []):0
Application-Id Application-Name Application-Type
User Queue State Final-State Progress
Tracking-URL
-
根据 Application 状态过滤:yarn application -list -appStates (所有状态:ALL、NEW、NEW_SAVING、SUBMITTED、ACCEPTED、RUNNING、FINISHED、FAILED、KILLED) [root@vm15561 ~]# yarn application -list -appStates FINISHED
Total number of applications (application-types: [] and states: [FINISHED]):35
Application-Id Application-Name Application-Type User Queue State Final-State Progress Tracking-URL
application_1615840247786_0003 oozie:launcher:T=spark:W=exportdata_381_1615912168684:A=exportdata:ID=0000009-210316050918731-oozie-root-W MAPREDUCE fenghuo root.oozielauncher FINISHED SUCCEEDED 100% http://vm15561:19888/jobhistory/job/job_1615840247786_0003
-
Kill 掉 Application: [atguigu@hadoop102 hadoop-3.1.3]$ yarn application -kill
application_1612577921195_0001
2021-02-06 10:23:48,530 INFO client.RMProxy: Connecting to ResourceManager at hadoop103/192.168.10.103:8032
Application application_1612577921195_0001 has already finished
1.5.3 yarn applicationattempt 查看尝试运行的任务
-
列出所有 Application 尝试的列表:yarn applicationattempt -list <ApplicationId> [root@vm15561 ~]# yarn applicationattempt -list application_1615840247786_0038
Total number of application attempts :1
ApplicationAttempt-Id State AM-Container-Id Tracking-URL
appattempt_1615840247786_0038_000001 FINISHED container_1615840247786_0038_01_000001 http://vm15561:8034/proxy/application_1615840247786_0038/
-
打印 ApplicationAttemp 状态:yarn applicationattempt -status <ApplicationAttemptId> [atguigu@hadoop102 hadoop-3.1.3]$ yarn applicationattempt -status appattempt_1612577921195_0001_000001
2021-02-06 10:27:55,896 INFO client.RMProxy: Connecting to ResourceManager
at hadoop103/192.168.10.103:8032
Application Attempt Report :
ApplicationAttempt-Id : appattempt_1612577921195_0001_000001
State : FINISHED
AMContainer : container_1612577921195_0001_01_000001
Tracking-URL :
http://hadoop103:8088/proxy/application_1612577921195_0001/
RPC Port : 34756
AM Host : hadoop104
Diagnostics :
1.5.4 yarn container 查看容器
-
列出所有 Container:yarn container -list <ApplicationAttemptId> [atguigu@hadoop102 hadoop-3.1.3]$ yarn container -list appattempt_1612577921195_0001_000001
2021-02-06 10:28:41,396 INFO client.RMProxy: Connecting to ResourceManager
at hadoop103/192.168.10.103:8032
Total number of containers :0
Container-Id Start Time Finish Time
State Host Node Http Address
-
打印 Container 状态:yarn container -status <ContainerId> [atguigu@hadoop102 hadoop-3.1.3]$ yarn container -status container_1612577921195_0001_01_000001
2021-02-06 10:29:58,554 INFO client.RMProxy: Connecting to ResourceManager
at hadoop103/192.168.10.103:8032
Container with id 'container_1612577921195_0001_01_000001' doesn't exist
in RM or Timeline Server.
注:只有在任务跑的途中才能看到 container 的状态
1.5.5 yarn node 查看节点状态
列出所有节点:yarn node -list -all
[atguigu@hadoop102 hadoop-3.1.3]$ yarn node -list -all
2021-02-06 10:31:36,962 INFO client.RMProxy: Connecting to ResourceManager
at hadoop103/192.168.10.103:8032
Total Nodes:3
Node-Id Node-State Node-Http-Address Number-of-Running-
Containers
hadoop103:38168 RUNNING hadoop103:8042
0
hadoop102:42012 RUNNING hadoop102:8042
0
hadoop104:39702 RUNNING hadoop104:8042
0
1.5.6 yarn rmadmin 更新配置
加载队列配置:yarn rmadmin -refreshQueues
[atguigu@hadoop102 hadoop-3.1.3]$ yarn rmadmin -refreshQueues
2021-02-06 10:32:03,331 INFO client.RMProxy: Connecting to ResourceManager
at hadoop103/192.168.10.103:8033
1.5.7 yarn queue 查看队列
打印队列信息:yarn queue -status <QueueName>
[root@vm15561 ~]# yarn queue -status default
Queue Information :
Queue Name : root.default
State : RUNNING
Capacity : .0%
Current Capacity : .0%
Maximum Capacity : -100.0%
Default Node Label expression : <DEFAULT_PARTITION>
Accessible Node Labels :
1.6 Yarn 生产环境核心参数

第 2 章 Yarn案例实操
注:调整下列参数之前尽量拍摄 Linux 快照,否则后续的案例,还需要重写准备集群。
2.1 Yarn 生产环境核心参数配置案例
-
需求:从 1G 数据中,统计每个单词出现次数。服务器 3 台,每台配置 4G 内存,4 核CPU,4 线程。 -
需求分析: 1G / 128m = 8 个 MapTask;1 个 ReduceTask;1 个 mrAppMaster 平均每个节点运行 10 个 / 3 台 ≈ 3 个任务(4 3 3) -
修改 yarn-site.xml 配置参数如下:
<property>
<description>The class to use as the resource scheduler.</description>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capaci
ty.CapacityScheduler
</value>
</property>
<property>
<description>Number of threads to handle scheduler
interface.
</description>
<name>yarn.resourcemanager.scheduler.client.thread-count</name>
<value>8</value>
</property>
<property>
<description>Enable auto-detection of node capabilities such as
memory and CPU.
</description>
<name>yarn.nodemanager.resource.detect-hardware-capabilities</name>
<value>false</value>
</property>
<property>
<description>Flag to determine if logical processors(such as
hyperthreads) should be counted as cores. Only applicable on Linux
when yarn.nodemanager.resource.cpu-vcores is set to -1 and
yarn.nodemanager.resource.detect-hardware-capabilities is true.
</description>
<name>yarn.nodemanager.resource.count-logical-processors-as-
cores
</name>
<value>false</value>
</property>
<property>
<description>Multiplier to determine how to convert phyiscal cores to
vcores. This value is used if yarn.nodemanager.resource.cpu-vcores
is set to -1(which implies auto-calculate vcores) and
yarn.nodemanager.resource.detect-hardware-capabilities is set to true.
The number of vcores will be calculated as number of CPUs * multiplier.
</description>
<name>yarn.nodemanager.resource.pcores-vcores-multiplier</name>
<value>1.0</value>
</property>
<property>
<description>Amount of physical memory, in MB, that can be allocated
for containers. If set to -1 and
yarn.nodemanager.resource.detect-hardware-capabilities is true, it is
automatically calculated(in case of Windows and Linux).
In other cases, the default is 8192MB.
</description>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>4096</value>
</property>
<property>
<description>Number of vcores that can be allocated
for containers. This is used by the RM scheduler when allocating
resources for containers. This is not used to limit the number of
CPUs used by YARN containers. If it is set to -1 and
yarn.nodemanager.resource.detect-hardware-capabilities is true, it is
automatically determined from the hardware in case of Windows and Linux.
In other cases, number of vcores is 8 by default.
</description>
<name>yarn.nodemanager.resource.cpu-vcores</name>
<value>4</value>
</property>
<property>
<description>The minimum allocation for every container request at the
RM in MBs. Memory requests lower than this will be set to the value of
this property. Additionally, a node manager that is configured to have
less memory than this value will be shut down by the resource manager.
</description>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>1024</value>
</property>
<property>
<description>The maximum allocation for every container request at the
RM in MBs. Memory requests higher than this will throw an
InvalidResourceRequestException.
</description>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>2048</value>
</property>
<property>
<description>The minimum allocation for every container request at the
RM in terms of virtual CPU cores. Requests lower than this will be set to
the value of this property. Additionally, a node manager that is configured
to have fewer virtual cores than this value will be shut down by the
resource manager.
</description>
<name>yarn.scheduler.minimum-allocation-vcores</name>
<value>1</value>
</property>
<property>
<description>The maximum allocation for every container request at the
RM in terms of virtual CPU cores. Requests higher than this will throw an
InvalidResourceRequestException.
</description>
<name>yarn.scheduler.maximum-allocation-vcores</name>
<value>2</value>
</property>
<property>
<description>Whether virtual memory limits will be enforced for
containers.
</description>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>
<property>
<description>Ratio between virtual memory to physical memory when
setting memory limits for containers. Container allocations are
expressed in terms of physical memory, and virtual memory usage is
allowed to exceed this allocation by this ratio.
</description>
<name>yarn.nodemanager.vmem-pmem-ratio</name>
<value>2.1</value>
</property>
关闭虚拟内存检查原因  4. 分发配置。 注意:如果集群的硬件资源不一致,要每个 NodeManager 单独配置
-
重启集群 [atguigu@hadoop102 hadoop-3.1.3]$ sbin/stop-yarn.sh
[atguigu@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh
-
执行 WordCount 程序 [atguigu@hadoop102 hadoop-3.1.3]$ hadoop jar
share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount /input /output
-
观察 Yarn 任务执行页面 http://hadoop103:8088/cluster/apps
2.2 容量调度器多队列提交案例
- 在生产环境怎么创建队列?
- 调度器默认就 1 个 default 队列,不能满足生产要求。
- 按照框架:hive /spark/ flink 每个框架的任务放入指定的队列(企业用的不是特别多)
- 按照业务模块:登录注册、购物车、下单、业务部门 1、业务部门 2
- 创建多队列的好处?
- 因为担心员工不小心,写递归死循环代码,把所有资源全部耗尽。
- 实现任务的降级使用,特殊时期保证重要的任务队列资源充足。11.11 6.18
- 业务部门 1(重要)=》业务部门 2(比较重要)=》下单(一般)=》购物车(一般)=》
登录注册(次要)
2.2.1 需求
需求 1:default 队列占总内存的 40%,最大资源容量占总资源 60%,hive 队列占总内存的 60%,最大资源容量占总资源 80%。 需求 2:配置队列优先级
2.2.2 配置多队列的容量调度器
-
在 capacity-scheduler.xml 中配置如下: (1)修改如下配置
<property>
<name>yarn.scheduler.capacity.root.queues</name>
<value>default,hive</value>
<description>The queues at the this level (root is the root queue).</description>
</property>
<property>
<name>yarn.scheduler.capacity.root.default.capacity</name>
<value>40</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.default.maximum-capacity</name>
<value>60</value>
</property>
-
为新加队列添加必要属性:
<property>
<name>yarn.scheduler.capacity.root.hive.capacity</name>
<value>60</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.hive.user-limit-factor</name>
<value>1</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.hive.maximum-capacity</name>
<value>80</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.hive.state</name>
<value>RUNNING</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.hive.acl_submit_applications</name>
<value>*</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.hive.acl_administer_queue</name>
<value>*</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.hive.acl_application_max_priority
</name>
<value>*</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.hive.maximum-application-
lifetime
</name>
<value>-1</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.hive.default-application-
lifetime
</name>
<value>-1</value>
</property>
-
分发配置文件 -
重启 Yarn 或者执行 yarn rmadmin -refreshQueues 刷新队列,就可以看到两条队列: [atguigu@hadoop102 hadoop-3.1.3]$ yarn rmadmin -refreshQueues

2.2.3 向 Hive 队列提交任务
-
hadoop jar 的方式 [atguigu@hadoop102 hadoop-3.1.3]$ hadoop jar
share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount -D
mapreduce.job.queuename=hive /input /output
注: -D 表示运行时改变参数值 -
打 jar 包的方式 默认的任务提交都是提交到 default 队列的。如果希望向其他队列提交任务,需要在Driver 中声明: Driver 中声明: public class WcDrvier {
public static void main(String[] args) throws IOException,
ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
conf.set("mapreduce.job.queuename","hive");
Job job = Job.getInstance(conf);
。。。 。。。
boolean b = job.waitForCompletion(true);
System.exit(b ? 0 : 1);
}
}
这样,这个任务在集群提交时,就会提交到 hive 队列: 
2.2.4 任务优先级
容量调度器,支持任务优先级的配置,在资源紧张时,优先级高的任务将优先获取资源。默认情况,Yarn 将所有任务的优先级限制为 0,若想使用任务的优先级功能,须开放该限制。
-
修改 yarn-site.xml 文件,增加以下参数 <property>
<name>yarn.cluster.max-application-priority</name>
<value>5</value>
</property>
-
分发配置,并重启 Yarn [atguigu@hadoop102 hadoop]$ xsync yarn-site.xml
[atguigu@hadoop103 hadoop-3.1.3]$ sbin/stop-yarn.sh
[atguigu@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh
-
模拟资源紧张环境,可连续提交以下任务,直到新提交的任务申请不到资源为止。 [atguigu@hadoop102 hadoop-3.1.3]$ hadoop jar /opt/module/hadoop-
3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar pi 5
2000000

- 再次重新提交优先级高的任务
[atguigu@hadoop102 hadoop-3.1.3]$ hadoop jar /opt/module/hadoop-
3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar pi -D
mapreduce.job.priority=5 5 2000000

-
也可以通过以下命令修改正在执行的任务的优先级。 yarn application -appID <ApplicationID> -updatePriority 优先级 [atguigu@hadoop102 hadoop-3.1.3]$ yarn application -appID application_1611133087930_0009 -updatePriority 5
2.3 公平调度器案例
2.3.1 需求
创建两个队列,分别是 test 和 atguigu(以用户所属组命名)。期望实现以下效果:若用户提交任务时指定队列,则任务提交到指定队列运行;若未指定队列,test 用户提交的任务到 root.group.test 队列运行,atguigu 提交的任务到 root.group.atguigu 队列运行(注:group为用户所属组)。 公平调度器的配置涉及到两个文件,一个是 yarn-site.xml,另一个是公平调度器队列分配文件 fair-scheduler.xml(文件名可自定义)。 (1)配置文件参考资料: https://hadoop.apache.org/docs/r3.1.3/hadoop-yarn/hadoop-yarn-site/FairScheduler.html (2)任务队列放置规则参考资料: https://blog.cloudera.com/untangling-apache-hadoop-yarn-part-4-fair-scheduler-queue-basics/
2.3.2 配置 多队列的公平调度器
- 修改 yarn-site.xml 文件,加入以下参数
<property>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler</value>
<description>配置使用公平调度器</description>
</property>
<property>
<name>yarn.scheduler.fair.allocation.file</name>
<value>/opt/module/hadoop-3.1.3/etc/hadoop/fair-scheduler.xml</value>
<description>指明公平调度器队列分配配置文件</description>
</property>
<property>
<name>yarn.scheduler.fair.preemption</name>
<value>false</value>
<description>禁止队列间资源抢占</description>
</property>
- 配置 fair-scheduler.xml
<property>
<name>yarn.scheduler.capacity.root.hive.capacity</name>
<value>60</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.hive.user-limit-factor</name>
<value>1</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.hive.maximum-capacity</name>
<value>80</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.hive.state</name>
<value>RUNNING</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.hive.acl_submit_applications</name>
<value>*</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.hive.acl_administer_queue</name>
<value>*</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.hive.acl_application_max_priority
</name>
<value>*</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.hive.maximum-application-
lifetime
</name>
<value>-1</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.hive.default-application-
lifetime
</name>
<value>-1</value>
</property>
-
分发配置并重启 Yarn [atguigu@hadoop102 hadoop]$ xsync yarn-site.xml
[atguigu@hadoop102 hadoop]$ xsync fair-scheduler.xml
[atguigu@hadoop103 hadoop-3.1.3]$ sbin/stop-yarn.sh
[atguigu@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh
2.3.3 测试提交任务
- 提交任务时指定队列,按照配置规则,任务会到指定的 root.test 队列
[atguigu@hadoop102 hadoop-3.1.3]$ hadoop jar /opt/module/hadoop3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar pi -
Dmapreduce.job.queuename=root.test 1 1
 2. 提交任务时不指定队列,按照配置规则,任务会到 root.atguigu.atguigu 队列
[atguigu@hadoop102 hadoop-3.1.3]$ hadoop jar /opt/module/hadoop-
3.1.3/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar pi 1 1

2.4 Yarn 的Tool接口案例
-
回顾: [atguigu@hadoop102 hadoop-3.1.3]$ hadoop jar wc.jar com.atguigu.mapreduce.wordcount2.WordCountDriver /input /output1
期望可以动态传参,结果报错,误认为是第一个输入参数。 [atguigu@hadoop102 hadoop-3.1.3]$ hadoop jar wc.jar com.atguigu.mapreduce.wordcount2.WordCountDriver -
Dmapreduce.job.queuename=root.test /input /output1
-
需求:自己写的程序也可以动态修改参数。编写 Yarn 的 Tool 接口。 -
具体步骤:
- 新建 Maven 项目 YarnDemo,pom 如下:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.atguigu.hadoop</groupId>
<artifactId>yarn_tool_test</artifactId>
<version>1.0-SNAPSHOT</version>
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>3.1.3</version>
</dependency>
</dependencies>
</project>
-
新建 com.atguigu.yarn 报名 -
创建类 WordCount 并实现 Tool 接口 public class WordCount implements Tool
{
private Configuration conf;
@Override
public int run(String[] args) throws Exception
{
Job job = Job.getInstance(conf);
job.setJarByClass(WordCountDriver.class);
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
return job.waitForCompletion(true) ? 0 : 1;
}
@Override
public void setConf(Configuration conf)
{
this.conf = conf;
}
@Override
public Configuration getConf()
{
return conf;
}
public static class WordCountMapper extends
Mapper<LongWritable, Text, Text, IntWritable>
{
private Text outK = new Text();
private IntWritable outV = new IntWritable(1);
@Override
protected void map(LongWritable key, Text value,
Context context) throws IOException, InterruptedException
{
String line = value.toString();
String[] words = line.split(" ");
for (String word : words)
{
outK.set(word);
context.write(outK, outV);
}
}
}
public static class WordCountReducer extends Reducer<Text,
IntWritable, Text, IntWritable>
{
private IntWritable outV = new IntWritable();
@Override
protected void reduce(Text key, Iterable<IntWritable>
values, Context context) throws IOException,
InterruptedException
{
int sum = 0;
for (IntWritable value : values)
{
sum += value.get();
}
outV.set(sum);
context.write(key, outV);
}
}
}
-
新建 WordCountDriver public class WordCountDriver
{
private static Tool tool;
public static void main(String[] args) throws Exception
{
Configuration conf = new Configuration();
switch (args[0])
{
case "wordcount":
tool = new WordCount();
break;
default:
throw new RuntimeException(" No such tool: " +
args[0]);
}
int run = ToolRunner.run(conf, tool,
Arrays.copyOfRange(args, 1, args.length));
System.exit(run);
}
}
-
在 HDFS 上准备输入文件,假设为/input 目录,向集群提交该 Jar 包 [atguigu@hadoop102 hadoop-3.1.3]$ yarn jar YarnDemo.jar
com.atguigu.yarn.WordCountDriver wordcount /input /output
注意此时提交的 3 个参数,第一个用于生成特定的 Tool,第二个和第三个为输入输出目录。此时如果我们希望加入设置参数,可以在 wordcount 后面添加参数,例如: [atguigu@hadoop102 hadoop-3.1.3]$ yarn jar YarnDemo.jar
com.atguigu.yarn.WordCountDriver wordcount -
Dmapreduce.job.queuename=root.test /input /output1
注:以上操作全部做完过后,快照回去或者手动将配置文件修改成之前的状态,因为本身资源就不够,分成了这么多,不方便以后测试。
素材来源于网络,本文只做整理补充,如有侵权,请联系我删除。
|