IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> 2021-08-08 -> 正文阅读

[大数据]2021-08-08

离线数仓

一 、ods层

1.1创建订单表(ods_order_info)

hive (gmall)>
drop table if exists ods_order_info;
create external table ods_order_info (
    `id` string COMMENT '订单编号',
    `total_amount` decimal(10,2) COMMENT '订单金额',
    `order_status` string COMMENT '订单状态',
    `user_id` string COMMENT '用户id',
    `payment_way` string COMMENT '支付方式',
    `out_trade_no` string COMMENT '支付流水号',
    `create_time` string COMMENT '创建时间',
    `operate_time` string COMMENT '操作时间'
) COMMENT '订单表'
PARTITIONED BY (`dt` string)
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ods/ods_order_info/';

1.2创建订单详情表(ods_order_detail)

hive (gmall)>
drop table if exists ods_order_detail;
create external table ods_order_detail( 
    `id` string COMMENT '订单详情编号',
    `order_id` string  COMMENT '订单号', 
    `user_id` string COMMENT '用户id',
    `sku_id` string COMMENT '商品id',
    `sku_name` string COMMENT '商品名称',
    `order_price` string COMMENT '商品单价',
    `sku_num` string COMMENT '商品数量',
    `create_time` string COMMENT '创建时间'
) COMMENT '订单明细表'
PARTITIONED BY (`dt` string)
row format delimited fields terminated by '\t' 
location '/warehouse/gmall/ods/ods_order_detail/';

1.3创建商品表(ods_sku_info)

hive (gmall)>
drop table if exists ods_sku_info;
create external table ods_sku_info( 
    `id` string COMMENT 'skuId',
    `spu_id` string   COMMENT 'spuid', 
    `price` decimal(10,2) COMMENT '价格',
    `sku_name` string COMMENT '商品名称',
    `sku_desc` string COMMENT '商品描述',
    `weight` string COMMENT '重量',
    `tm_id` string COMMENT '品牌id',
    `category3_id` string COMMENT '品类id',
    `create_time` string COMMENT '创建时间'
) COMMENT '商品表'
PARTITIONED BY (`dt` string)
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ods/ods_sku_info/';

1.4创建用户表(ods_user_info)

hive (gmall)>
drop table if exists ods_user_info;
create external table ods_user_info( 
    `id` string COMMENT '用户id',
    `name`  string COMMENT '姓名',
    `birthday` string COMMENT '生日',
    `gender` string COMMENT '性别',
    `email` string COMMENT '邮箱',
    `user_level` string COMMENT '用户等级',
    `create_time` string COMMENT '创建时间'
) COMMENT '用户信息'
PARTITIONED BY (`dt` string)
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ods/ods_user_info/';

1.5创建商品一级分类表(ds_base_category1)

hive (gmall)>
drop table if exists ods_base_category1;
create external table ods_base_category1( 
    `id` string COMMENT 'id',
    `name`  string COMMENT '名称'
) COMMENT '商品一级分类'
PARTITIONED BY (`dt` string)
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ods/ods_base_category1/';

1.6创建商品二级分类表(ds_base_category2)

hive (gmall)>
drop table if exists ods_base_category2;
create external table ods_base_category2( 
    `id` string COMMENT ' id',
    `name` string COMMENT '名称',
    category1_id string COMMENT '一级品类id'
) COMMENT '商品二级分类'
PARTITIONED BY (`dt` string)
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ods/ods_base_category2/';

1.7创建商品三级分类表(ds_base_category3)

hive (gmall)>
drop table if exists ods_base_category3;
create external table ods_base_category3(
    `id` string COMMENT ' id',
    `name`  string COMMENT '名称',
    category2_id string COMMENT '二级品类id'
) COMMENT '商品三级分类'
PARTITIONED BY (`dt` string)
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ods/ods_base_category3/';

1.8创建支付流水表(ods_payment_info)

hive (gmall)>
drop table if exists ods_payment_info;
create external table ods_payment_info(
    `id`   bigint COMMENT '编号',
    `out_trade_no`    string COMMENT '对外业务编号',
    `order_id`        string COMMENT '订单编号',
    `user_id`         string COMMENT '用户编号',
    `alipay_trade_no` string COMMENT '支付宝交易流水编号',
    `total_amount`    decimal(16,2) COMMENT '支付金额',
    `subject`         string COMMENT '交易内容',
    `payment_type`    string COMMENT '支付类型',
    `payment_time`    string COMMENT '支付时间'
   )  COMMENT '支付流水表'
PARTITIONED BY (`dt` string)
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ods/ods_payment_info/';

1.9ods层数据导入脚本(ods_db.sh)

#!/bin/bash

   APP=gmall
   hive=/opt/module/hive/bin/hive

# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
	do_date=$1
else 
	do_date=`date -d "-1 day" +%F`
fi

sql=" 
load data inpath '/origin_data/$APP/db/order_info/$do_date' OVERWRITE into table "$APP".ods_order_info partition(dt='$do_date');

load data inpath '/origin_data/$APP/db/order_detail/$do_date' OVERWRITE into table "$APP".ods_order_detail partition(dt='$do_date');

load data inpath '/origin_data/$APP/db/sku_info/$do_date' OVERWRITE into table "$APP".ods_sku_info partition(dt='$do_date');

load data inpath '/origin_data/$APP/db/user_info/$do_date' OVERWRITE into table "$APP".ods_user_info partition(dt='$do_date');

load data inpath '/origin_data/$APP/db/payment_info/$do_date' OVERWRITE into table "$APP".ods_payment_info partition(dt='$do_date');

load data inpath '/origin_data/$APP/db/base_category1/$do_date' OVERWRITE into table "$APP".ods_base_category1 partition(dt='$do_date');

load data inpath '/origin_data/$APP/db/base_category2/$do_date' OVERWRITE into table "$APP".ods_base_category2 partition(dt='$do_date');

load data inpath '/origin_data/$APP/db/base_category3/$do_date' OVERWRITE into table "$APP".ods_base_category3 partition(dt='$do_date'); 
"
$hive -e "$sql"

二、dwd层

2.1创建订单表(dwd_order_info)

hive (gmall)>
drop table if exists dwd_order_info;
create external table dwd_order_info (
    `id` string COMMENT '',
    `total_amount` decimal(10,2) COMMENT '',
    `order_status` string COMMENT ' 1 2 3 4 5',
    `user_id` string COMMENT 'id',
    `payment_way` string COMMENT '',
    `out_trade_no` string COMMENT '',
    `create_time` string COMMENT '',
    `operate_time` string COMMENT ''
) 
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_order_info/'
tblproperties ("parquet.compression"="snappy");

2.2创建订单详情表(dwd_order_detail)

hive (gmall)>
drop table if exists dwd_order_detail;
create external table dwd_order_detail( 
    `id` string COMMENT '',
    `order_id` decimal(10,2) COMMENT '', 
    `user_id` string COMMENT 'id',
    `sku_id` string COMMENT 'id',
    `sku_name` string COMMENT '',
    `order_price` string COMMENT '',
    `sku_num` string COMMENT '',
    `create_time` string COMMENT ''
)
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_order_detail/'
tblproperties ("parquet.compression"="snappy");

2.3创建用户表(dwd_user_info)

hive (gmall)>
drop table if exists dwd_user_info;
create external table dwd_user_info( 
    `id` string COMMENT 'id',
    `name` string COMMENT '', 
    `birthday` string COMMENT '',
    `gender` string COMMENT '',
    `email` string COMMENT '',
    `user_level` string COMMENT '',
    `create_time` string COMMENT ''
) 
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_user_info/'
tblproperties ("parquet.compression"="snappy");

2.4创建支付流水表(dwd_payment_info)

hive (gmall)>
drop table if exists dwd_payment_info;
create external table dwd_payment_info(
    `id`   bigint COMMENT '',
    `out_trade_no`    string COMMENT '',
    `order_id`        string COMMENT '',
    `user_id`         string COMMENT '',
    `alipay_trade_no` string COMMENT '',
    `total_amount`    decimal(16,2) COMMENT '',
    `subject`         string COMMENT '',
    `payment_tpe`    string COMMENT '',
    `payment_time`    string COMMENT ''
   )  
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_payment_info/'
tblproperties ("parquet.compression"="snappy");

2.5创建商品表(增加分类)(dwd_sku_info)

hive (gmall)>
drop table if exists dwd_sku_info;
create external table dwd_sku_info(
    `id` string COMMENT 'skuId',
    `spu_id` string COMMENT 'spuid',
    `price` decimal(10,2) COMMENT '',
    `sku_name` string COMMENT '',
    `sku_desc` string COMMENT '',
    `weight` string COMMENT '',
    `tm_id` string COMMENT 'id',
    `category3_id` string COMMENT '1id',
    `category2_id` string COMMENT '2id',
    `category1_id` string COMMENT '3id',
    `category3_name` string COMMENT '3',
    `category2_name` string COMMENT '2',
    `category1_name` string COMMENT '1',
    `create_time` string COMMENT ''
) 
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_sku_info/'
tblproperties ("parquet.compression"="snappy");

2.6dwd层数据导入脚本(dwd_db.sh)

#!/bin/bash

# 定义变量方便修改
APP=gmall
hive=/opt/module/hive/bin/hive

# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
	do_date=$1
else 
	do_date=`date -d "-1 day" +%F`  
fi 

sql="

set hive.exec.dynamic.partition.mode=nonstrict;

insert overwrite table "$APP".dwd_order_info partition(dt)
select * from "$APP".ods_order_info 
where dt='$do_date' and id is not null;
 
insert overwrite table "$APP".dwd_order_detail partition(dt)
select * from "$APP".ods_order_detail 
where dt='$do_date'   and id is not null;

insert overwrite table "$APP".dwd_user_info partition(dt)
select * from "$APP".ods_user_info
where dt='$do_date' and id is not null;
 
insert overwrite table "$APP".dwd_payment_info partition(dt)
select * from "$APP".ods_payment_info
where dt='$do_date' and id is not null;

insert overwrite table "$APP".dwd_sku_info partition(dt)
select  
    sku.id,
    sku.spu_id,
    sku.price,
    sku.sku_name,
    sku.sku_desc,
    sku.weight,
    sku.tm_id,
    sku.category3_id,
    c2.id category2_id,
    c1.id category1_id,
    c3.name category3_name,
    c2.name category2_name,
    c1.name category1_name,
    sku.create_time,
    sku.dt
from
    "$APP".ods_sku_info sku
join "$APP".ods_base_category3 c3 on sku.category3_id=c3.id 
    join "$APP".ods_base_category2 c2 on c3.category2_id=c2.id 
    join "$APP".ods_base_category1 c1 on c2.category1_id=c1.id 
where sku.dt='$do_date'  and c2.dt='$do_date'
and c3.dt='$do_date' and c1.dt='$do_date'
and sku.id is not null;
"

$hive -e "$sql"

三、dws层

3.1创建用户行为宽表(dws_user_action)

hive (gmall)>
drop table if exists dws_user_action;
create external table dws_user_action 
(   
    user_id          string      comment '用户 id',
    order_count     bigint      comment '下单次数 ',
    order_amount    decimal(16,2)  comment '下单金额 ',
    payment_count   bigint      comment '支付次数',
    payment_amount  decimal(16,2) comment '支付金额 ',
    comment_count   bigint      comment '评论次数'
) COMMENT '每日用户行为宽表'
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dws/dws_user_action/';

3.2向用户行为宽表导入数据

hive (gmall)>
with 
tmp_order as
(
    select 
        user_id, 
count(*)  order_count,
        sum(oi.total_amount) order_amount
    from dwd_order_info oi
    where date_format(oi.create_time,'yyyy-MM-dd')='2019-02-10'
    group by user_id
) ,
tmp_payment as
(
    select
        user_id, 
        sum(pi.total_amount) payment_amount, 
        count(*) payment_count 
    from dwd_payment_info pi 
    where date_format(pi.payment_time,'yyyy-MM-dd')='2019-02-10'
    group by user_id
),
tmp_comment as
(
    select
        user_id,
        count(*) comment_count
    from dwd_comment_log c
    where date_format(c.dt,'yyyy-MM-dd')='2019-02-10'
    group by user_id
)

insert overwrite table dws_user_action partition(dt='2019-02-10')
select
    user_actions.user_id,
    sum(user_actions.order_count),
    sum(user_actions.order_amount),
    sum(user_actions.payment_count),
    sum(user_actions.payment_amount),
    sum(user_actions.comment_count)
from 
(
    select
        user_id,
        order_count,
        order_amount,
        0 payment_count,
        0 payment_amount,
        0 comment_count
    from tmp_order

    union all
    select
        user_id,
        0,
        0,
        payment_count,
        payment_amount,
        0
    from tmp_payment

    union all
    select
        user_id,
        0,
        0,
        0,
        0,
        comment_count
    from tmp_comment
 ) user_actions
group by user_id;

3.3用户行为数据宽表导入脚本(dws_db_wide.sh)

#!/bin/bash

# 定义变量方便修改
APP=gmall
hive=/opt/module/hive/bin/hive

# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
	do_date=$1
else 
	do_date=`date -d "-1 day" +%F`  
fi 

sql="

with  
tmp_order as
(
    select 
        user_id, 
        sum(oi.total_amount) order_amount, 
        count(*)  order_count
    from "$APP".dwd_order_info  oi
    where date_format(oi.create_time,'yyyy-MM-dd')='$do_date'
    group by user_id
)  ,
tmp_payment as
(
    select 
        user_id, 
        sum(pi.total_amount) payment_amount, 
        count(*) payment_count 
    from "$APP".dwd_payment_info pi 
    where date_format(pi.payment_time,'yyyy-MM-dd')='$do_date'
    group by user_id
),
tmp_comment as
(  
    select  
        user_id, 
        count(*) comment_count
    from "$APP".dwd_comment_log c
    where date_format(c.dt,'yyyy-MM-dd')='$do_date'
    group by user_id 
)

Insert overwrite table "$APP".dws_user_action partition(dt='$do_date')
select 
    user_actions.user_id, 
    sum(user_actions.order_count), 
    sum(user_actions.order_amount),
    sum(user_actions.payment_count), 
    sum(user_actions.payment_amount),
    sum(user_actions.comment_count) 
from
(
    select
        user_id,
        order_count,
        order_amount,
        0 payment_count,
        0 payment_amount,
        0 comment_count
    from tmp_order

    union all
    select
        user_id,
        0,
        0,
        payment_count,
        payment_amount,
        0
    from tmp_payment

    union all
    select
        user_id,
        0,
        0,
        0,
        0,
        comment_count 
    from tmp_comment
 ) user_actions
group by user_id;
"

$hive -e "$sql"

3.4用户购买商品明细表(宽表)(dws_sale_detail_daycount)

3.4.1建表

hive (gmall)>
drop table if exists dws_sale_detail_daycount;
create external table dws_sale_detail_daycount
(   
    user_id   string  comment '用户 id',
    sku_id    string comment '商品 Id',
    user_gender  string comment '用户性别',
    user_age string  comment '用户年龄',
    user_level string comment '用户等级',
    order_price decimal(10,2) comment '商品价格',
    sku_name string   comment '商品名称',
    sku_tm_id string   comment '品牌id',
    sku_category3_id string comment '商品三级品类id',
    sku_category2_id string comment '商品二级品类id',
    sku_category1_id string comment '商品一级品类id',
    sku_category3_name string comment '商品三级品类名称',
    sku_category2_name string comment '商品二级品类名称',
    sku_category1_name string comment '商品一级品类名称',
    spu_id  string comment '商品 spu',
    sku_num  int comment '购买个数',
    order_count string comment '当日下单单数',
    order_amount string comment '当日下单金额'
) COMMENT '用户购买商品明细表'
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dws/dws_user_sale_detail_daycount/'
tblproperties ("parquet.compression"="snappy");

3.4.2导入数据

hive (gmall)>
with
tmp_detail as
(
    select
        user_id,
        sku_id, 
        sum(sku_num) sku_num,   
        count(*) order_count, 
        sum(od.order_price*sku_num) order_amount
    from dwd_order_detail od
    where od.dt='2019-02-10'
    group by user_id, sku_id
)  
insert overwrite table dws_sale_detail_daycount partition(dt='2019-02-10')
select 
    tmp_detail.user_id,
    tmp_detail.sku_id,
    u.gender,
    months_between('2019-02-10', u.birthday)/12  age, 
    u.user_level,
    price,
    sku_name,
    tm_id,
    category3_id,
    category2_id,
    category1_id,
    category3_name,
    category2_name,
    category1_name,
    spu_id,
    tmp_detail.sku_num,
    tmp_detail.order_count,
    tmp_detail.order_amount 
from tmp_detail 
left join dwd_user_info u on tmp_detail.user_id =u.id and u.dt='2019-02-10'
left join dwd_sku_info s on tmp_detail.sku_id =s.id and s.dt='2019-02-10';

3.4.3脚本(dws_sale.sh)

#!/bin/bash

# 定义变量方便修改
APP=gmall
hive=/opt/module/hive/bin/hive

# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
	do_date=$1
else 
	do_date=`date -d "-1 day" +%F`  
fi 

sql="

set hive.exec.dynamic.partition.mode=nonstrict;

with
tmp_detail as
(
    select 
        user_id,
        sku_id, 
        sum(sku_num) sku_num,   
        count(*) order_count, 
        sum(od.order_price*sku_num)  order_amount
    from "$APP".dwd_order_detail od
    where od.dt='$do_date'
    group by user_id, sku_id
)  
insert overwrite table "$APP".dws_sale_detail_daycount partition(dt='$do_date')
select 
    tmp_detail.user_id,
    tmp_detail.sku_id,
    u.gender,
    months_between('$do_date', u.birthday)/12  age, 
    u.user_level,
    price,
    sku_name,
    tm_id,
    category3_id,
    category2_id,
    category1_id,
    category3_name,
    category2_name,
    category1_name,
    spu_id,
    tmp_detail.sku_num,
    tmp_detail.order_count,
    tmp_detail.order_amount 
from tmp_detail 
left join "$APP".dwd_user_info u 
on tmp_detail.user_id=u.id and u.dt='$do_date'
left join "$APP".dwd_sku_info s on tmp_detail.sku_id =s.id  and s.dt='$do_date';

"
$hive -e "$sql"

3.5新付费用户数(dws_pay_user_detail)

3.5.1建表

drop table if exists dws_pay_user_detail;
create external table dws_pay_user_detail(   
    `user_id` string comment '付费用户id',
    `name` string comment '付费用户姓名',
    `birthday` string COMMENT '',
    `gender` string COMMENT '',
    `email` string COMMENT '',
    `user_level` string COMMENT ''
) COMMENT '付费用户表'
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dws/dws_pay_user_detail/';

3.5.2导入数据

insert overwrite table dws_pay_user_detail partition(dt='2019-10-03')
select
   ua.user_id,
   ui.name,
   ui.birthday,
   ui.gender,
   ui.email,
   ui.user_level
from (
  select user_id from dws_user_action where dt='2019-10-03' 
) ua join( 
  select * from dwd_user_info where dt='2019-10-03'- 用户表是每日全量导入
) ui on ua.user_id=ui.id
left join dws_pay_user_detail ud on ua.user_id=ud.user_i

3.5.3脚本(dws_pay_user_detail.sh)

#!/bin/bash
db=gmall
hive=/opt/module/hive/bin/hive
hadoop=/opt/module/hadoop-2.7.2/bin/hadoop

if [[ -n $1 ]]; then
    do_date=$1
else
    do_date=`date -d '-1 day' +%F`
fi

sql="
use gmall;
insert overwrite table dws_pay_user_detail partition(dt='$do_date')
select
   ua.user_id,
   ui.name,
   ui.birthday,
   ui.gender,
   ui.email,
   ui.user_level
from (
  select user_id from dws_user_action where dt='$do_date'
) ua join(
  select * from dwd_user_info where dt='$do_date'
) ui on ua.user_id=ui.id
left join dws_pay_user_detail ud on ua.user_id=ud.user_id
where ud.user_id is null;
"

$hive -e "$sql"

四、ads层

4.1一天成交总额(ads_gmv_sum_day)

4.1.1建表

hive (gmall)>
drop table if exists ads_gmv_sum_day;
create external table ads_gmv_sum_day(
    `dt` string COMMENT '统计日期',
    `gmv_count`  bigint COMMENT '当日gmv订单个数',
    `gmv_amount`  decimal(16,2) COMMENT '当日gmv订单总金额',
    `gmv_payment`  decimal(16,2) COMMENT '当日支付金额'
) COMMENT 'GMV'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_gmv_sum_day/';

4.1.2数据导入

hive (gmall)>
insert into table ads_gmv_sum_day
select 
'2019-02-10' dt,
    sum(order_count) gmv_count,
    sum(order_amount) gmv_amount,
    sum(payment_amount) payment_amount
from dws_user_action
where dt ='2019-02-10'
group by dt;

4.1.3脚本(ads_db_gmv.sh)

#!/bin/bash

# 定义变量方便修改
APP=gmall
hive=/opt/module/hive/bin/hive

# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
	do_date=$1
else 
	do_date=`date -d "-1 day" +%F`
fi 

sql="
insert into table "$APP".ads_gmv_sum_day 
select 
    '$do_date' dt,
    sum(order_count)  gmv_count,
    sum(order_amount) gmv_amount,
    sum(payment_amount) payment_amount 
from "$APP".dws_user_action 
where dt ='$do_date'
group by dt;
"

$hive -e "$sql"

4.2新增用户占日活跃用户比率(ads_user_convert_day)

4.2.1建表

hive (gmall)>
drop table if exists ads_user_convert_day;
create external table ads_user_convert_day( 
    `dt` string COMMENT '统计日期',
    `uv_m_count`  bigint COMMENT '当日活跃设备',
    `new_m_count`  bigint COMMENT '当日新增设备',
    `new_m_ratio`   decimal(10,2) COMMENT '当日新增占日活的比率'
) COMMENT '转化率'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_user_convert_day/';

4.2.2数据导入

hive (gmall)>
insert into table ads_user_convert_day
select
    '2021-06-09',
    sum(uc.dc) sum_dc,
    sum(uc.nmc) sum_nmc,
    sum( uc.nmc)/sum( uc.dc)*100 new_m_ratio
from 
(
    select
        day_count dc,
        0 nmc
    from ads_uv_count
where dt='2019-02-10'

    union all
    select
        0 dc,
                new_mid_count nmc
    from ads_new_mid_count
    where create_date='2019-02-10'
)uc;


4.3用户行为漏斗分析(ads_user_action_convert_day)

4.3.1建表

hive (gmall)>
drop table if exists ads_user_action_convert_day;
create external  table ads_user_action_convert_day(
    `dt` string COMMENT '统计日期',
    `total_visitor_m_count`  bigint COMMENT '总访问人数',
    `order_u_count` bigint     COMMENT '下单人数',
    `visitor2order_convert_ratio`  decimal(10,2) COMMENT '访问到下单转化率',
    `payment_u_count` bigint     COMMENT '支付人数',
    `order2payment_convert_ratio` decimal(10,2) COMMENT '下单到支付的转化率'
 ) COMMENT '用户行为漏斗分析'
row format delimited  fields terminated by '\t'
location '/warehouse/gmall/ads/ads_user_action_convert_day/';

4.3.2数据导入

hive (gmall)>
insert into table ads_user_action_convert_day
select 
    '2019-06-09',
    uv.day_count,
    ua.order_count,
    cast(ua.order_count/uv.day_count as  decimal(10,2)) visitor2order_convert_ratio,
    ua.payment_count,
    cast(ua.payment_count/ua.order_count as  decimal(10,2)) order2payment_convert_ratio
from  
(
select 
    dt,
        sum(if(order_count>0,1,0)) order_count,
        sum(if(payment_count>0,1,0)) payment_count
    from dws_user_action
where dt='2021-06-09'
group by dt
)ua join ads_uv_count  uv on uv.dt=ua.dt;

4.4品牌复购率

4.4.1建表

hive (gmall)>
drop table ads_sale_tm_category1_stat_mn;
create external table ads_sale_tm_category1_stat_mn
(   
    tm_id string comment '品牌id',
    category1_id string comment '1级品类id ',
    category1_name string comment '1级品类名称 ',
    buycount   bigint comment  '购买人数',
    buy_twice_last bigint  comment '两次以上购买人数',
    buy_twice_last_ratio decimal(10,2)  comment  '单次复购率',
    buy_3times_last   bigint comment   '三次以上购买人数',
    buy_3times_last_ratio decimal(10,2)  comment  '多次复购率',
    stat_mn string comment '统计月份',
    stat_date string comment '统计日期' 
)   COMMENT '复购率统计'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_sale_tm_category1_stat_mn/';

4.4.2数据导入

hive (gmall)>
insert into table ads_sale_tm_category1_stat_mn
select   
    mn.sku_tm_id,
    mn.sku_category1_id,
    mn.sku_category1_name,
    sum(if(mn.order_count>=1,1,0)) buycount,
    sum(if(mn.order_count>=2,1,0)) buyTwiceLast,
    sum(if(mn.order_count>=2,1,0))/sum( if(mn.order_count>=1,1,0)) buyTwiceLastRatio,
    sum(if(mn.order_count>=3,1,0))  buy3timeLast  ,
    sum(if(mn.order_count>=3,1,0))/sum( if(mn.order_count>=1,1,0)) buy3timeLastRatio ,
    date_format('2019-02-10' ,'yyyy-MM') stat_mn,
    '2019-02-10' stat_date
from 
(
select 
        user_id, 
sd.sku_tm_id,
        sd.sku_category1_id,
        sd.sku_category1_name,
        sum(order_count) order_count
    from dws_sale_detail_daycount sd 
    where date_format(dt,'yyyy-MM')=date_format('2019-02-10' ,'yyyy-MM')
    group by user_id, sd.sku_tm_id, sd.sku_category1_id, sd.sku_category1_name
) mn
group by mn.sku_tm_id, mn.sku_category1_id, mn.sku_category1_name;

4.4.3脚本(ads_sale.sh)

#!/bin/bash

# 定义变量方便修改
APP=gmall
hive=/opt/module/hive/bin/hive

# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
	do_date=$1
else 
	do_date=`date -d "-1 day" +%F`  
fi 

sql="

set hive.exec.dynamic.partition.mode=nonstrict;

insert into table "$APP".ads_sale_tm_category1_stat_mn
select   
    mn.sku_tm_id,
    mn.sku_category1_id,
    mn.sku_category1_name,
    sum(if(mn.order_count>=1,1,0)) buycount,
    sum(if(mn.order_count>=2,1,0)) buyTwiceLast,
    sum(if(mn.order_count>=2,1,0))/sum( if(mn.order_count>=1,1,0)) buyTwiceLastRatio,
    sum(if(mn.order_count>=3,1,0)) buy3timeLast,
    sum(if(mn.order_count>=3,1,0))/sum( if(mn.order_count>=1,1,0)) buy3timeLastRatio ,
    date_format('$do_date' ,'yyyy-MM') stat_mn,
    '$do_date' stat_date
from 
(     
select 
        user_id, 
od.sku_tm_id, 
        od.sku_category1_id,
        od.sku_category1_name,  
        sum(order_count) order_count
    from "$APP".dws_sale_detail_daycount  od 
    where date_format(dt,'yyyy-MM')=date_format('$do_date' ,'yyyy-MM')
    group by user_id, od.sku_tm_id, od.sku_category1_id, od.sku_category1_name
) mn
group by mn.sku_tm_id, mn.sku_category1_id, mn.sku_category1_name;

"
$hive -e "$sql"

4.5各用户等级对应的复购率前十的商品(ads_ul_rep_ratio)

4.5.1建表

drop  table ads_ul_rep_ratio;
create  table ads_ul_rep_ratio(   
    user_level string comment '用户等级' ,
    sku_id string comment '商品id',
buy_count bigint  comment '购买总人数',
buy_twice_count bigint comment  '两次购买总数',
    buy_twice_rate decimal(10,2)  comment  '二次复购率', 
rank string comment  '排名' ,
    state_date string comment '统计日期'
)   COMMENT '复购率统计'
row format delimited  fields terminated by '\t' 
location '/warehouse/gmall/ads/ads_ul_rep_ratio/';

4.5.2数据导入

with 
tmp_count as(
  select -- 每个等级内每个用户对每个产品的下单次数    
user_level,
user_id,
    sku_id,
    sum(order_count) order_count
  from dws_sale_detail_daycount
  where dt<='2019-10-05'
  group by user_level, user_id, sku_id
)
insert overwrite table ads_ul_rep_ratio
select
  *
from(
  select
    user_level,
    sku_id,
    sum(if(order_count >=1, 1, 0)) buy_count,
    sum(if(order_count >=2, 1, 0)) buy_twice_count,
    sum(if(order_count >=2, 1, 0)) / sum(if(order_count >=1, 1, 0)) * 100  buy_twice_rate,
    row_number() over(partition by user_level order by sum(if(order_count >=2, 1, 0)) / sum(if(order_count >=1, 1, 0)) desc) rn,
    '2019-10-05'
  from tmp_count
  group by user_level, sku_id
) t1
where rn<=10

4.5.3脚本(ads_ul_rep_ratio.sh)

#!/bin/bash

db=gmall
hive=/opt/module/hive-1.2.1/bin/hive
hadoop=/opt/module/hadoop-2.7.2/bin/hadoop

if [[ -n $1 ]]; then
    do_date=$1
else
    do_date=`date -d '-1 day' +%F`
fi

sql="
use gmall;
with
tmp_count as(
  select -- 每等级用户每产品的下单次数
    user_level,
    sku_id,
    sum(order_count) order_count
  from dws_sale_detail_daycount
  where dt<='$do_date'
  group by user_level, sku_id
)
insert overwrite table ads_ul_rep_ratio
select
  *
from(
  select
    user_level,
    sku_id,
    sum(if(order_count >=1, 1, 0)) buy_count,
    sum(if(order_count >=2, 1, 0)) buy_twice_count,
    sum(if(order_count >=2, 1, 0)) / sum(if(order_count >=1, 1, 0)) * 100  buy_twice_rate,
    row_number() over(partition by user_level order by sum(if(order_count >=2, 1, 0)) / sum(if(order_count >=1, 1, 0)) desc) rn,
    '$do_date'
  from tmp_count
  group by user_level, sku_id
) t1
where rn<=10
"

$hive -e "$sql"

4.6新付费用户数(ads_pay_user_count)

4.6.1建表

drop table if exists ads_pay_user_count;
create external table ads_pay_user_count(   
    dt string COMMENT '统计日期',
    pay_count   bigint  COMMENT '付费用户数'
) COMMENT '付费用户表'
stored as parquet
location '/warehouse/gmall/dws/ads_pay_user_count/';

4.6.2数据导入

insert into table ads_pay_user_count
select
    '2019-02-10',
    count(*) pay_count
from
    dws_pay_user_detail
where
    dt='2019-02-10';

4.6.3脚本(ads_pay_user_count.sh)

#!/bin/bash

# 定义变量方便修改
APP=gmall
hive=/opt/module/hive/bin/hive
hadoop=/opt/module/hadoop-2.7.2/bin/hadoop

# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
   do_date=$1
else 
   do_date=`date -d "-1 day" +%F`
fi

echo "===日志日期为 $do_date==="
sql="
insert into table "$APP".ads_pay_user_count
select
    '$do_date',
    count(*) pay_count
from
    "$APP".dws_pay_user_detail
where
    dt='$do_date';
"

$hive -e "$sql"

五、azkaban

5.1安装azkaban

  1. 在/opt/module/目录下创建azkaban目录

mkdir azkaban

  1. 解压azkaban-web-server-2.5.0.tar.gz、azkaban-executor-server-2.5.0.tar.gz、azkaban-sql-script-2.5.0.tar.gz到/opt/module/azkaban目录下

tar -zxvf azkaban-web-server-2.5.0.tar.gz -C /opt/module/azkaban/

tar -zxvf azkaban-executor-server-2.5.0.tar.gz -C /opt/module/azkaban/

tar -zxvf azkaban-sql-script-2.5.0.tar.gz -C /opt/module/azkaban/

  1. 对解压后的文件重新命名

mv azkaban-web-2.5.0/ server

mv azkaban-executor-2.5.0/ executor

  1. azkaban脚本导入

? 进入mysql,创建azkaban数据库,并将解压的脚本导入到azkaban数据库。

mysql> create database azkaban;

mysql> use azkaban;

mysql> source /opt/module/azkaban/azkaban-2.5.0/create-all-sql-2.5.0.sql

注:source后跟.sql文件,用于批量处理.sql文件中的sql语句。

5.2生成密钥库

Keytool:是java数据证书的管理工具,使用户能够管理自己的公/私钥对及相关证书。

-keystore:指定密钥库的名称及位置(产生的各类信息将不在.keystore文件中)

-genkey:在用户主目录中创建一个默认文件".keystore"

-alias:对我们生成的.keystore进行指认别名;如果没有默认是mykey

-keyalg:指定密钥的算法 RSA/DSA 默认是DSA

1)生成 keystore的密码及相应信息的密钥库

[ azkaban]$ keytool -keystore keystore -alias jetty -genkey -keyalg RSA

5.3配置文件

Web服务器配置

1)进入azkaban web服务器安装目录 conf目录,打开azkaban.properties文件

pwd

/opt/module/azkaban/server/conf

vim azkaban.properties

2)按照如下配置修改azkaban.properties文件。

#Azkaban Personalization Settings

#服务器UI名称,用于服务器上方显示的名字

azkaban.name=Test

#描述

azkaban.label=My Local Azkaban

#UI颜色

azkaban.color=#FF3601

azkaban.default.servlet.path=/index

#默认web server存放web文件的目录

web.resource.dir=/opt/module/azkaban/server/web/

#默认时区,已改为亚洲/上海 默认为美国

default.timezone.id=Asia/Shanghai

 

#Azkaban UserManager class

user.manager.class=azkaban.user.XmlUserManager

#用户权限管理默认类(绝对路径)

user.manager.xml.file=/opt/module/azkaban/server/conf/azkaban-users.xml

 

#Loader for projects

#global配置文件所在位置(绝对路径)

executor.global.properties=/opt/module/azkaban/executor/conf/global.properties

azkaban.project.dir=projects

 

#数据库类型

database.type=mysql

#端口号

mysql.port=3306

#数据库连接IP

mysql.host=hadoop102

#数据库实例名

mysql.database=azkaban

#数据库用户名

mysql.user=root

#数据库密码

mysql.password=123456

#最大连接数

mysql.numconnections=100

 

# Velocity dev mode

velocity.dev.mode=false

 

# Azkaban Jetty server properties.
# Jetty服务器属性.

#最大线程数

jetty.maxThreads=25

#Jetty SSL端口

jetty.ssl.port=8443

#Jetty端口

jetty.port=8081

#SSL文件名(绝对路径)

jetty.keystore=/opt/module/azkaban/server/keystore

#SSL文件密码

jetty.password=000000

#Jetty主密码与keystore文件相同

jetty.keypassword=000000

#SSL文件名(绝对路径)

jetty.truststore=/opt/module/azkaban/server/keystore

#SSL文件密码

jetty.trustpassword=000000

 

# Azkaban Executor settings

executor.port=12321

 

# mail settings

mail.sender=

mail.host=

job.failure.email=

job.success.email=

 

lockdown.create.projects=false

 

cache.directory=cache

5.4启动executor服务器

在executor服务器目录下执行启动命令

pwd

/opt/module/azkaban/executor

bin/azkaban-executor-start.sh

5.5 启动web服务器

在azkaban web服务器目录下执行启动命令

[atguigu@hadoop102 server]$ pwd

/opt/module/azkaban/server

bin/azkaban-web-start.sh

注意:

先执行executor,再执行web,避免Web Server会因为找不到执行器启动失败。

jps查看进程

[atguigu@hadoop102 server]$ jps

3601 AzkabanExecutorServer

5880 Jps

3661 AzkabanWebServer

启动完成后,在浏览器(建议使用谷歌浏览器)中输入https://服务器IP地址:8443,即可访问azkaban服务了。

在登录中输入刚才在azkaban-users.xml文件中新添加的户用名及密码,点击 login。

六、安装Presto

[root@hadoop103 soft]# tar -zxvf presto-server-0.196.tar.gz -C …/module

[root@hadoop103 soft]# mv presto-cli-0.196-executable.jar presto-cli
[root@hadoop103 soft]# mv presto-cli /opt/module/

[root@hadoop103 module]# mv presto-server-0.196 presto

进入到/opt/module/presto目录,并创建存储数据文件夹

[root@hadoop103 presto]# mkdir data
[root@hadoop103 presto]# mkdir etc

配置在/opt/module/presto/etc目录下添加jvm.config配置文件

-server
-Xmx16G
-XX:+UseG1GC
-XX:G1HeapRegionSize=32M
-XX:+UseGCOverheadLimit
-XX:+ExplicitGCInvokesConcurrent
-XX:+HeapDumpOnOutOfMemoryError
-XX:+ExitOnOutOfMemoryError

Presto可以支持多个数据源,在Presto里面叫catalog,这里我们配置支持Hive的数据源,配置一个Hive的catalog

[root@hadoop103 etc]# mkdir catalog
[root@hadoop103 catalog]# vim hive.properties

xsync presto

分发之后,分别进入hadoop102、hadoop103、hadoop104三台主机的/opt/module/presto/etc的路径。配置node属性,node id每个节点都不一样。

[root@hadoop102 etc]#vim node.properties

node.environment=production

node.id=ffffffff-ffff-ffff-ffff-fffffffffffe

node.data-dir=/opt/module/presto/data

[root@hadoop103 etc]#vim node.properties

node.environment=production

node.id=ffffffff-ffff-ffff-ffff-ffffffffffff

node.data-dir=/opt/module/presto/data

[root@hadoop104 etc]#vim node.properties

node.environment=production

node.id=ffffffff-ffff-ffff-ffff-fffffffffffd

node.data-dir=/opt/module/presto/data

Presto是由一个coordinator节点和多个worker节点组成。在hadoop102上配置成coordinator,在hadoop103、hadoop104上配置为worker。

(1)hadoop102上配置coordinator节点

[root@hadoop103 etc]$ vim config.properties

添加内容如下

coordinator=true

node-scheduler.include-coordinator=false

http-server.http.port=8881

query.max-memory=50GB

discovery-server.enabled=true

discovery.uri=http://hadoop103:8881

(2)hadoop103、hadoop104上配置worker节点

[root@hadoop102 etc]$ vim config.properties

添加内容如下

coordinator=false

http-server.http.port=8881

query.max-memory=50GB

discovery.uri=http://hadoop103:8881

 

[root@hadoop104 etc]$ vim config.properties

添加内容如下

coordinator=false

http-server.http.port=8881

query.max-memory=50GB

discovery.uri=http://hadoop103:8881

在hadoop103的/opt/module/hive目录下,启动Hive Metastore,用root角色

[root@hadoop103 hive]$nohup bin/hive --service metastore >/dev/null 2>&1 &

前台启动Presto,控制台显示日志

[root@hadoop102 presto]$ bin/launcher run

[root@hadoop103 presto]$ bin/launcher run

[root@hadoop104 presto]$ bin/launcher run

后台启动Presto

[root@hadoop102 presto]$ bin/launcher start

[root@hadoop103 presto]$ bin/launcher start

[root@hadoop104 presto]$ bin/launcher start

日志查看路径/opt/module/presto/data/var/log

进入/opt/module/presto/plugin/hive-hadoop2

[root@hadoop103 hive-hadoop2]# cp /opt/module/hadoop-2.7.2/share/hadoop/common/hadoop-lzo-0.4.20.jar ./

xsync hadoop-lzo-0.4.20.jar

连接presto

java -jar presto-cli --server hadoop103:8881 --catalog hive --schema default

七、安装druid

解压

进入/opt/module/imply-2.7.10/conf/druid/_common

vim common.runtime.properties

修改druid.zk.service.host=hadoop102:2181,hadoop103:2181,hadoop104:2181

vim /opt/module/imply/conf/supervise/quickstart.conf

修改

:verify bin/verify-java

#:verify bin/verify-default-ports

#:verify bin/verify-version-check

:kill-timeout 10

#!p10 zk bin/run-zk conf-quickstart

(1)启动Zookeeper

zk start

(2)启动kafka

kf start

(2)启动imply

bin/supervise -c conf/supervise/quickstart.conf

web界面

hadoop103:9095

八、安装hbase

tar -zxvf hbase-1.3.1-bin.tar.gz -C /opt/module/

改名

mv hbase-1.3.1 hbase

配置环境变量

vim /etc/profile

HBASE_HOME=/opt/module/hbase

8.1配置文件

进入/opt/module/hbase/conf

vim hbase-env.sh

将下面代码注释掉

export HBASE_MASTER_OPTS="$HBASE_MASTER_OPTS -XX:PermSize=128m -XX:MaxPermSize=128m"
export HBASE_REGIONSERVER_OPTS="$HBASE_REGIONSERVER_OPTS -XX:PermSize=128m -XX:MaxPermSize=128m"

export HBASE_MANAGES_ZK=false将注释去掉,并将true改为false

vim hbase-site.xml

添加如下代码

<configuration>
	<property>     
		<name>hbase.rootdir</name>     
		<value>hdfs://hadoop102:9000/hbase</value>   
	</property>

	<property>   
		<name>hbase.cluster.distributed</name>
		<value>true</value>
	</property>

   <!-- 0.98后的新变动,之前版本没有.port,默认端口为60000 -->
	<property>
		<name>hbase.master.port</name>
		<value>16000</value>
	</property>

	<property>   
		<name>hbase.zookeeper.quorum</name>
	     <value>hadoop102,hadoop103,hadoop104</value>
	</property>

	<property>   
		<name>hbase.zookeeper.property.dataDir</name>
	     <value>/opt/module/zookeeper-3.4.10/datas</value>
	</property>
</configuration>

vim regionservers

添加

hadoop102
hadoop103
hadoop104

启动

[hbase]$ bin/start-hbase.sh

对应的停止服务:

[hbase]$ bin/stop-hbase.sh

启动成功后,可以通过“host:port”的方式来访问HBase管理页面,例如:

http://hadoop103:16010

九、安装kylin

tar -zxvf apache-kylin-2.5.1-bin-hbase1x.tar.gz -C /opt/module/

mv apache-kylin-2.5.1 kylin

启动

bin/kylin.sh start

kylin界面

http://hadoop103:7070/kylin

9.1kylin的使用

1、基于之前的雪花模型或星座模型

2、基于之前的建模构建诺干cube

3、写sql查询即可

具体步骤

1、创建一个project

2、选中当前的project,向proje中加载表(hive中)

? 加载一个事实表:dwd_payment_info

? 加载两个维度表:dwd_order_info,dwd_user_info

3、建模(星型模型或雪花模型)

4、创建cube

? 注意:要求事实表和维度表在关联时不能出现主键重复的现象

? 在关联时,对于每日全量同步的维度表,最好只选择最新的日期的数据进行关联

? ①将最新的分区数据,查询,写入一个临时表,关联时,指定临时表作为关联的维度

? 表

? ②创建view,将最新的分区的数据,放入视图(虚表中)(推荐)

CREATE VIEW dwd_user_info_view as SELECT * from dwd_user_info
WHERE dt='2021-06-10';
CREATE VIEW dwd_order_info_view as SELECT * from dwd_user_info
WHERE dt='2021-06-10

5、查询

? 只能写select支持使用聚集函数和group by

? 在join时,事实表必须放在左边

6、选择拉链表作为维度表时的注意事项

? dwd_order_info: 每日全量-----维度表id不能重复—只能选择今天最新的分区
? 每日增量同步,今天最新的分区只有今天最新的数据,没有之前的数据!
? dwd_order_info_his: 同步所有数据的状态变化
? 含有全部信息

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2021-08-09 10:18:18  更:2021-08-09 10:20:03 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/24 10:38:43-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码