IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> 大数据实战电商推荐系统(3)-基于隐语义模型的离线推荐模块 -> 正文阅读

[大数据]大数据实战电商推荐系统(3)-基于隐语义模型的离线推荐模块

数据获取和处理详见上一篇文章:https://blog.csdn.net/qq_42754919/article/details/119493103

这一节主要介绍基于隐语义模型的协同过滤推荐算法,根据用户评价商品计算用户和商品之间的关系。最后生成用户推荐商品列表和商品相似度列表。

1.创建文件+配置文件

在这里插入图片描述

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <parent>
        <artifactId>recommender</artifactId>
        <groupId>com.root</groupId>
        <version>1.0-SNAPSHOT</version>
    </parent>
    <modelVersion>4.0.0</modelVersion>

    <artifactId>OfflineRecommender</artifactId>
    <groupId>com.root.recommender</groupId>

    <dependencies>
        <dependency>
            <groupId>org.scalanlp</groupId>
            <artifactId>jblas</artifactId>
            <version>${jblas.version}</version>
        </dependency>
        <!-- Spark的依赖引入 -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.11</artifactId>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-mllib_2.11</artifactId>
        </dependency>
        <!-- 引入Scala -->
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
        </dependency>
        <!-- 加入MongoDB的驱动 -->
        <!-- 用于代码方式连接MongoDB -->
        <dependency>
            <groupId>org.mongodb</groupId>
            <artifactId>casbah-core_2.11</artifactId>
            <version>${casbah.version}</version>
        </dependency>
        <!-- 用于Spark和MongoDB的对接 -->
        <dependency>
            <groupId>org.mongodb.spark</groupId>
            <artifactId>mongo-spark-connector_2.11</artifactId>
            <version>${mongodb-spark.version}</version>
        </dependency>
    </dependencies>
    <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
    </properties>
</project>

2. 模型+算法

2.1 隐语义模型

基于协同过滤的隐语义模型算法主要思想为:输入的用户id和商品id之间只存在评分关联,并不知道为什么当前用户对此商品的评分规则。因此,隐语义模型算法假设存在K个隐含特征使得用户id和商品id之间的评分产生影响。
将输入数据R(m*n)转化为P(m *k)×U(k *n),其中m表示用户数量,n表示商品数量,k表示隐含特征。 在spark
MLlib库中有已经定义的隐语义模型算法,直接调用就可以。

2.2 商品相似度矩阵

一般使用余弦相似度,将隐语义模型计算出来的隐含特征作为当前商品的特征向量,根据两个商品的特征向量计算余弦相似度作为两个商品的相似度。

在这里插入图片描述

2.3 算法

package com.root.offline

import org.apache.spark.SparkConf
import org.apache.spark.mllib.recommendation.{ALS, Rating}
import org.apache.spark.sql.SparkSession
import org.jblas.DoubleMatrix

case class ProductRating(UserId:Int, ProductId:Int, Score:Double, Time:Int)
//MongoDB的连接配置
case class MongoConfig(uri:String, db:String)
//定义推荐标准对象
case class Recommenderdation(productId:Int, score:Double)
//定义用户推荐列表
case class UserRecs(userId:Int, recs:Seq[Recommenderdation])
//定义商品相似度列表
case class ProductRecs(productId:Int,recs:Seq[Recommenderdation])
object OfflineRecommender {
  val MongoDB_Rating="Rating"
  val USER_RECS = "UserRecs"
  val PRODUCT_RECS = "ProductRecs"
  val USER_MAX_RECOMMENDATION = 20
  def main(args: Array[String]): Unit = {
    val config = Map(
      "spark.cores" -> "local[*]",
      "mongo.uri" -> "mongodb://localhost:27017/recommender",
      "mongo.db" -> "recommender"
    )
    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("OfflineRecommender")
    val spark = SparkSession.builder().config(sparkConf).getOrCreate()
    import spark.implicits._
    implicit val mongoConfig = MongoConfig(config("mongo.uri"),config("mongo.db"))
    val ratingRDD = spark.read
      .option("uri", mongoConfig.uri)
      .option("collection", MongoDB_Rating)
      .format("com.mongodb.spark.sql")
      .load()
      .as[ProductRating]
      .rdd
      .map(rating=>(rating.UserId,rating.ProductId,rating.Score)).cache()
    //提取出用户和商品的数据集,并去重
    val UserRDD = ratingRDD.map(_._1).distinct()
    val productRDD = ratingRDD.map(_._2).distinct()
    //TODO:核心计算过程
    //1.训练隐语义模型。输入格式必须为RDD[Rating]形式
    val trainData = ratingRDD.map(x => Rating(x._1, x._2, x._3))
    //rank表示隐特征个数,模型中潜在因素的数量
    val model = ALS.train(trainData, rank = 5, iterations = 10, lambda = 0.01)
    //2.获得预测评分矩阵,得到用户的推荐列表
    //用userRDD和productRDD做笛卡尔积,得到空的userproductRDD
    val userproduct = UserRDD.cartesian(productRDD)//输入格式RDD[user:Int,product:In]
    val preRating = model.predict(userproduct)//输出格式Rating[user:Int,product:Int,rating:Double]
    //从预测评分矩阵中提取到用户推荐列表
    val userRecs = preRating.filter(_.rating > 0).map(rating => (rating.user, (rating.product, rating.rating)))
                  .groupByKey()
      .map{case (userId,recs)=>UserRecs(userId,recs.toList.sortWith(_._2>_._2).take(USER_MAX_RECOMMENDATION)
                                          .map(x=>Recommenderdation(x._1,x._2)))}.toDF()//转化成UserRecs表,数组集合的形式
    userRecs.write
      .option("uri",mongoConfig.uri)
      .option("collection",USER_RECS)
      .mode("overwrite")
      .format("com.mongodb.spark.sql")
      .save()
    //3.利用商品的特征向量,计算商品的相似度列表
    val productFeatures = model.productFeatures.map {
      case (productId, features) => (productId, new DoubleMatrix(features))
    }
    //两两配对商品,计算余弦相似度
    val productRecs = productFeatures.cartesian(productFeatures).filter(x => x._1 != x._2)
        .map{case(a,b) => val simScore = consinSim(a._2,b._2)
          (a._1,(b._1,simScore))
        }
        .filter(_._2._2>0.4)
        .groupByKey()
        .map{case (productId,recs)=>ProductRecs(productId,recs.toList.sortWith(_._2>_._2).map(x=>Recommenderdation(x._1,x._2)))}//转化成UserRecs表,数组集合的形式
        .toDF()
    productRecs.write
      .option("uri",mongoConfig.uri)
      .option("collection",PRODUCT_RECS)
      .mode("overwrite")
      .format("com.mongodb.spark.sql")
      .save()
    //计算笛卡尔积并过滤合并
  }
  def consinSim(product1: DoubleMatrix, product2: DoubleMatrix): Double ={
    product1.dot(product2) / ( product1.norm2()  * product2.norm2() )
  }
}

3. 模型调参

  1. 将数据集分为测试集和训练集
  2. 输入不同rank(隐含特征值)和lambda(模型参数)
  3. 计算均方根误差,察预测评分与实际评分之间的误差。
    在这里插入图片描述
package com.root.offline

import breeze.numerics.sqrt
import com.root.offline.OfflineRecommender.MongoDB_Rating
import org.apache.spark.SparkConf
import org.apache.spark.mllib.recommendation.{ALS, MatrixFactorizationModel, Rating}
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SparkSession

object ALSTrainer {
  def main(args: Array[String]): Unit = {
    val config = Map(
      "spark.cores" -> "local[*]",
      "mongo.uri" -> "mongodb://localhost:27017/recommender",
      "mongo.db" -> "recommender"
    )
    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("ALSTrainer")
    val spark = SparkSession.builder().config(sparkConf).getOrCreate()
    import spark.implicits._
    implicit val mongoConfig = MongoConfig(config("mongo.uri"),config("mongo.db"))
    val ratingRDD = spark.read
      .option("uri", mongoConfig.uri)
      .option("collection", MongoDB_Rating)
      .format("com.mongodb.spark.sql")
      .load()
      .as[ProductRating]
      .rdd
      .map(rating=>Rating(rating.UserId,rating.ProductId,rating.Score)).cache()
    //切分数据集
    val splitdata = ratingRDD.randomSplit(Array(0.8, 0.2))
    val trainData = splitdata(0)
    val testData = splitdata(1)
    //核心实现,输出最优参数
    adjustALSParams(trainData,testData)
    spark.stop()
  }
  def adjustALSParams(trainData: RDD[Rating], testData: RDD[Rating]): Unit ={
    val result = for ( rank <- Array(5,10,20,30); lambda <- Array(1,0.1,0.01))
      yield {
        val model = ALS.train(trainData, rank, 10, lambda)
        val rmse = getRMSE(model,testData)
        (rank,lambda,rmse)
      }
    println(result.minBy(_._3))
  }
  def getRMSE(model: MatrixFactorizationModel, testData: RDD[Rating]): Double = {
    val useproduct = testData.map(x=>(x.user,x.product))
    val predictRating = model.predict(useproduct)
    val predict = predictRating.map(x => ((x.user, x.product), x.rating))
    val real = testData.map(x => ((x.user, x.product), x.rating))
    sqrt(
      real.join(predict).map{case ((useID,productID),(real,predict))=>
        val loss = real -predict
        loss*loss
      }.mean())
  }
}

在这里插入图片描述
结果展示rank=5,lambda=0.1时误差最小。

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2021-08-10 13:29:13  更:2021-08-10 13:29:57 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年5日历 -2024/5/17 17:03:43-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码