IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> Flink源码篇-FLINK的StreamingHive实现流程以及小文件压缩流程 -> 正文阅读

[大数据]Flink源码篇-FLINK的StreamingHive实现流程以及小文件压缩流程

Flink的HiveStreamingSink实现流程

前言

目前我们为了增强数据的时效性,增加了Flink实时写入Hive的流程,基于Flink写入Hive这里之前基本上是没有接触过的,看了官网的文章之后,由于我们的追求数据为1-10分钟内可见性,但是数据也不足1分钟就能达到128MB的情况,于是也会产生各种各样的十几MB的小文件,于是需要了解一下这个写入流程基于上面进行改造,使小文件能够达到自动合并的效果,顺便记录一下FlinkStreamingHive的流程



1,HiveTableSink初始化校验流程

1.1创建TableSink对象

public HiveTableSink(
        ReadableConfig flinkConf,
        JobConf jobConf,
        ObjectIdentifier identifier,
        CatalogTable table,
        @Nullable Integer configuredParallelism) {
	//构造方法传入参数
    this.flinkConf = flinkConf;
    this.jobConf = jobConf;
	//这个标识符是一个catalog,db和tbObjName的标识
    this.identifier = identifier;
	//CataLog中表的信息
    this.catalogTable = table;
	//HiveVersion这里很重要主要是为了根据不同的版本适配不同的实现方法,没有写入会获取你metastore默认的version
    hiveVersion =
            Preconditions.checkNotNull(
                    jobConf.get(HiveCatalogFactoryOptions.HIVE_VERSION.key()),
                    "Hive version is not defined");
	//hiveShim就是适配不同版本的工具类
    hiveShim = HiveShimLoader.loadHiveShim(hiveVersion);
	//获取表结构
    tableSchema = TableSchemaUtils.getPhysicalSchema(table.getSchema());
	//获取配置的Parallelism,这里是在工厂类里获取传入的
    this.configuredParallelism = configuredParallelism;
}

1.2返回SinkRunTimeProvider

 @Override
public SinkRuntimeProvider getSinkRuntimeProvider(Context context) {
    //数据结构映射器,映射Pojo为DataRow等操作...
    DataStructureConverter converter =
            context.createDataStructureConverter(tableSchema.toRowDataType());
    //这里就是返回一个DataStreamSinkProvider,用于在启动执行时提供Sink
    return (DataStreamSinkProvider)
            dataStream -> consume(dataStream, context.isBounded(), converter);
}

private DataStreamSink<?> consume(DataStream<RowData> dataStream, boolean isBounded, DataStructureConverter converter) {
    //检查是否是Hive的ACID表,在Hive高版本以上提供了ACID的概念,2.x以及3.x对acid支持的更好,Flink目前是不支持写入Hive的ACID表的
    checkAcidTable(catalogTable, identifier.toObjectPath()); 
	//try with resource  好处就是无论是否exception都会帮你close connector
    //flink 包装了一层主要就是根据版本来创建metastore client,继承了AutoCloseable帮助自动释放
    try (HiveMetastoreClientWrapper client = HiveMetastoreClientFactory.create(HiveConfUtils.create(jobConf), hiveVersion)) {
        //通过identifier获取Table对象;
        Table table = client.getTable(identifier.getDatabaseName(), identifier.getObjectName());
        //这里是获取表存储描述,里面包含表的一些元数据描述
        StorageDescriptor sd = table.getSd();
		//获取Hive输出结构Class
        Class hiveOutputFormatClz =hiveShim.getHiveOutputFormatClass(Class.forName(sd.getOutputFormat()));
        //文件是否进行存储压缩,text不压缩,如果store以orc or parquet即为true
        boolean isCompressed = jobConf.getBoolean(HiveConf.ConfVars.COMPRESSRESULT.varname, false);
        //对Hive操作的一个工厂,可以用来创建记录写入到Hive的写入器
        HiveWriterFactory writerFactory =
                new HiveWriterFactory(
                        jobConf,
                        hiveOutputFormatClz,
                        sd.getSerdeInfo(),
                        tableSchema,
                        getPartitionKeyArray(),
                        HiveReflectionUtils.getTableMetadata(hiveShim, table),
                        hiveShim,
                        isCompressed);
        //获取文件的扩展名,如果Table的Store是orc or parquet的话则是没有扩展名的
        String extension =
                Utilities.getFileExtension(
                        jobConf,
                        isCompressed,
                        (HiveOutputFormat<?, ?>) hiveOutputFormatClz.newInstance());
		//Flink输出的一个小配置,其中主要包含文件的前缀和后缀
        //后缀是基于上面获取的,而前缀则是part-随机字符创
        //比如说:part-e9ebbc0c-ae29-4ac7-8c84-f80daf385915-0-413
        //这里的前缀并不是最终的文件名称,当你开启了压缩之后还会在前面添加内容的
        OutputFileConfig.OutputFileConfigBuilder fileNamingBuilder =
                OutputFileConfig.builder()
                        .withPartPrefix("part-" + UUID.randomUUID().toString())
                        .withPartSuffix(extension == null ? "" : extension);
		//获取parallelism,主要是为了后面使用.
        final int parallelism =
                Optional.ofNullable(configuredParallelism).orElse(dataStream.getParallelism());
        //到这里针对于Sink的初始化基本已经结束了,接下来我们需要判断本次执行是Stream还是batch
        if (isBounded) {
            //如果是Batch的话输出文件名是不同的,需要注意一下这个
            OutputFileConfig fileNaming = fileNamingBuilder.build();
            return createBatchSink(
                    dataStream, converter, sd, writerFactory, fileNaming, parallelism);
        } else {
            //如果是Stream的话,首先肯定是不支持overwrite的,如果是overwrite的话,直接exception
            if (overwrite) {
                throw new IllegalStateException("Streaming mode not support overwrite.");
            }
			//获取一下Hive表的配置
            Properties tableProps = HiveReflectionUtils.getTableMetadata(hiveShim, table);
            //完成Hive的Sink创建
            return createStreamSink(
                    dataStream, sd, tableProps, writerFactory, fileNamingBuilder, parallelism);
        }
    } catch (TException e) {
        //异常这里也注意一下啦,后续排错方便~
        throw new CatalogException("Failed to query Hive metaStore", e);
    } catch (IOException e) {
        throw new FlinkRuntimeException("Failed to create staging dir", e);
    } catch (ClassNotFoundException e) {
        throw new FlinkHiveException("Failed to get output format class", e);
    } catch (IllegalAccessException | InstantiationException e) {
        throw new FlinkHiveException("Failed to instantiate output format instance", e);
    }
}

基于这里,我们针对于Flink的HiveTableSink初始化就基本了解的差不多完成了,说实话一个顶级的框架代码规范以及异常处理都是非常吊的,学框架的基本就是了解思想,其次要去看看别人怎么写代码,可以收获特别多,非常值得我们学习;

2,HiveTableStreamSink创建

2.1 StreamSink的创建

 private DataStreamSink<?> createStreamSink(  //说实话我有强迫症,这样看参数我好难受
         DataStream<RowData> dataStream,	//数据流,不用多说
         StorageDescriptor sd,//table storage description  里面包含一些描述
         Properties tableProps,	//table properties  表的配置就是你创建表的pros
         HiveWriterFactory recordWriterFactory, //记录写出工厂
         OutputFileConfig.OutputFileConfigBuilder fileNamingBuilder,//写出文件配置
         final int parallelism   //这里是subtask数量
         ) {
     //创建一个Flink Configuration对象
     org.apache.flink.configuration.Configuration conf = new org.apache.flink.configuration.Configuration();
     //然后将表的配置信息写入
     catalogTable.getOptions().forEach(conf::setString);
	 //数据分区计算器~也就是hive的数据存储分区啦
     HiveRowDataPartitionComputer partComputer =
             new HiveRowDataPartitionComputer(
                     hiveShim,
                     defaultPartName(),
                     tableSchema.getFieldNames(),
                     tableSchema.getFieldDataTypes(),
                     getPartitionKeyArray());
     //数据表bucket,根据partComputer来区分bucket
     TableBucketAssigner assigner = new TableBucketAssigner(partComputer);
     //数据文件滚动策略,这个是最早的文件处理机制,考虑到多分区的情况会产生小文件从而有了compress机制
     HiveRollingPolicy rollingPolicy =
             new HiveRollingPolicy(
                     conf.get(SINK_ROLLING_POLICY_FILE_SIZE).getBytes(),
                     conf.get(SINK_ROLLING_POLICY_ROLLOVER_INTERVAL).toMillis());
	 //是否开启分区文件压缩,分区文件压缩这里说明一下
     //为什么有了滚动策略还有这个压缩,比如你parallelism是5 那就是会创建5个小文件...自己想想吧
     boolean autoCompaction = conf.getBoolean(FileSystemOptions.AUTO_COMPACTION);
     //如果开启了之后所有写入的文件(没合并之前)都是uncompaction前缀的标识~
     if (autoCompaction) {
         fileNamingBuilder.withPartPrefix(
                 convertToUncompacted(fileNamingBuilder.build().getPartPrefix()));
     }
     //然后获取文件名配置
     OutputFileConfig outputFileConfig = fileNamingBuilder.build();
	 //获取path对象,这里的path对象是指表的存储路径,并不是某个文件的绝对路径,是表在HDFS的绝对路径
     org.apache.flink.core.fs.Path path = new org.apache.flink.core.fs.Path(sd.getLocation());
	 //BucketBuilder,
     BucketsBuilder<RowData, String, ? extends BucketsBuilder<RowData, ?, ?>> builder;
     //判断是否是MR的还是FLINK本身的
     if (flinkConf.get(HiveOptions.TABLE_EXEC_HIVE_FALLBACK_MAPRED_WRITER)) {
         builder =
                 bucketsBuilderForMRWriter(
                         recordWriterFactory, sd, assigner, rollingPolicy, outputFileConfig);
         LOG.info("Hive streaming sink: Use MapReduce RecordWriter writer.");
     } else {
         Optional<BulkWriter.Factory<RowData>> bulkFactory =
                 createBulkWriterFactory(getPartitionKeyArray(), sd);
         //根据不同的格式创建的bulkfactory,如果不存在则默认创建hadoop mr的
         if (bulkFactory.isPresent()) {
             builder =
                     StreamingFileSink.forBulkFormat(
                                     path,
                                     new FileSystemTableSink.ProjectionBulkFactory(
                                             bulkFactory.get(), partComputer))
                             .withBucketAssigner(assigner)
                             .withRollingPolicy(rollingPolicy)
                             .withOutputFileConfig(outputFileConfig);
             LOG.info("Hive streaming sink: Use native parquet&orc writer.");
         } else {
             builder =
                     bucketsBuilderForMRWriter(
                             recordWriterFactory, sd, assigner, rollingPolicy, outputFileConfig);
             LOG.info(
                     "Hive streaming sink: Use MapReduce RecordWriter writer because BulkWriter Factory not available.");
         }
     }
	 //bucket检查间隔,是建表是写在tblPro的参数值,详情见官网FileSystemSink
     long bucketCheckInterval = conf.get(SINK_ROLLING_POLICY_CHECK_INTERVAL).toMillis();
	 //输出流,这个sink只是将record写出到文件,并不是最终的operator
     DataStream<PartitionCommitInfo> writerStream;
     //判断是否开启压缩,是建表是写在tblPro的参数值
     if (autoCompaction) {
         //文件压缩的大小,这里我们要注意一下如果你不配置的话默认值就是你的SINK_ROLLING_POLICY_FILE_SIZE~
         long compactionSize =
                 conf.getOptional(FileSystemOptions.COMPACTION_FILE_SIZE)
                         .orElse(conf.get(SINK_ROLLING_POLICY_FILE_SIZE))
                         .getBytes();
		 //创建输出流,通过StreamingSink对象创建
         writerStream =
                 StreamingSink.compactionWriter(
                         dataStream,
                         bucketCheckInterval,
                         builder,
                         fsFactory(),
                         path,
                         createCompactReaderFactory(sd, tableProps),
                         compactionSize,
                         parallelism);
     } else {
         writerStream =
                 StreamingSink.writer(dataStream, bucketCheckInterval, builder, parallelism);
     }
	 //Sink就是挂载了Sink了这里先不急
     return StreamingSink.sink(
             writerStream, path, identifier, getPartitionKeys(), msFactory(), fsFactory(), conf);
 }

到这里StreamSink就挂载结束了,但是其真正的实现我们目前并没有看到,真正实现,其实实现是在compactionWriter中实现的,我们可以看一下这个内容

public static <T> DataStream<PartitionCommitInfo> compactionWriter(//晕~强迫症已经犯了
        DataStream<T> inputStream, //输入流,比如 rowData,String,Struct等
        long bucketCheckInterval,//检查间隔
        StreamingFileSink.BucketsBuilder<
                       T, String, ? extends StreamingFileSink.BucketsBuilder<T, String, ?>>
                bucketsBuilder,//bucker建造者
        FileSystemFactory fsFactory,//文件系统工厂
        Path path,//路径
        CompactReader.Factory<T> readFactory,//合并读取工厂,这里应该很好理解吧~
        long targetFileSize,//目标文件大小
        int parallelism  //分区数
        ) {
    /**
     * 这个类里实现了三个算子~我们来看一下这是哪个算子的用户
     * writer是用来写入数据到buckt,并且像下游发送openfile or checkpoint success message操作的
     *
     * coordinator是协调文件写入的operator,就是负责计算哪些文件可以合并	      的
     *
     * compacter是压缩的operator
     */
    CompactFileWriter<T> writer = new CompactFileWriter<>(bucketCheckInterval, bucketsBuilder);
    ..........
    CompactCoordinator coordinator = new CompactCoordinator(fsSupplier, targetFileSize);
	..........
    CompactOperator<T> compacter = new CompactOperator<>(fsSupplier, readFactory, writerFactory);

}

3,HiveTableStreamSink压缩流程

3.1 CompactFileWriter

这个类就是将数据写入文件中~其本身没有实现如何写入,真正写入数据是在其父类中,但是当其父类提交了检查点之后,他会向下游发送一条写入结束的记录;

package org.apache.flink.table.filesystem.stream.compact;

import org.apache.flink.core.fs.Path;
import org.apache.flink.streaming.api.functions.sink.filesystem.StreamingFileSink;
import org.apache.flink.streaming.runtime.streamrecord.StreamRecord;
import org.apache.flink.table.filesystem.stream.AbstractStreamingWriter;
import org.apache.flink.table.filesystem.stream.compact.CompactMessages.EndCheckpoint;
import org.apache.flink.table.filesystem.stream.compact.CompactMessages.InputFile;

/**
 * 该operator主要是继承了一个抽象类,重写了某些方法,
 * 而abstractStreamingWriter里面同时还包括写入数据的方法,在这里数据已经被写入bucket
 */
public class CompactFileWriter<T>
        extends AbstractStreamingWriter<T, CompactMessages.CoordinatorInput> {
	
    private static final long serialVersionUID = 1L;

    public CompactFileWriter(
            long bucketCheckInterval,
            StreamingFileSink.BucketsBuilder<
                            T, String, ? extends StreamingFileSink.BucketsBuilder<T, String, ?>>
                    bucketsBuilder) 
        super(bucketCheckInterval, bucketsBuilder);
    }

    @Override
    protected void partitionCreated(String partition) {}

    @Override
    protected void partitionInactive(String partition) {}

    @Override
    protected void onPartFileOpened(String partition, Path newPath) {
        //像下游发送通知,通知新的文件已经开始创建
        output.collect(new StreamRecord<>(new InputFile(partition, newPath)));
    }

    @Override
    public void notifyCheckpointComplete(long checkpointId) throws Exception {
        super.notifyCheckpointComplete(checkpointId);
        //当检查点结束时,像下游发送检查点完成的消息
        output.collect(
                new StreamRecord<>(
                        new EndCheckpoint(
                                checkpointId,
                                getRuntimeContext().getIndexOfThisSubtask(),
                                getRuntimeContext().getNumberOfParallelSubtasks())));
    }
}

/**
 * Operator for file system sink. It is a operator version of {@link StreamingFileSink}. It can send
 * file and bucket information to downstream.
 * 注释的大概意思是该类是StreamingFileSink的一个operator version,能够像下游发送file和bucket information
 */
public abstract class AbstractStreamingWriter<IN, OUT> extends AbstractStreamOperator<OUT>
        implements OneInputStreamOperator<IN, OUT>, BoundedOneInput {

    .........(略过代码标识)

    /** 分区创建通知 */
    protected abstract void partitionCreated(String partition);

    /**
     * Notifies a partition become inactive. A partition becomes inactive after all the records
     * received so far have been committed.
     */
    protected abstract void partitionInactive(String partition);

    /**
     * Notifies a new file has been opened.
     *
     * <p>Note that this does not mean that the file has been created in the file system. It is only
     * created logically and the actual file will be generated after it is committed.
     */
    protected abstract void onPartFileOpened(String partition, Path newPath);

    /** Commit up to this checkpoint id. */
    protected void commitUpToCheckpoint(long checkpointId) throws Exception {
        helper.commitUpToCheckpoint(checkpointId);
    }

    .........(略过代码标识)

    @Override//写出数据到bucket
    public void processElement(StreamRecord<IN> element) throws Exception {
        helper.onElement(
                element.getValue(),
                getProcessingTimeService().getCurrentProcessingTime(),
                element.hasTimestamp() ? element.getTimestamp() : null,
                currentWatermark);
    }
 .........(略过代码标识)
}

3.2CompactCoordinator

该operator的receiver为当前打开的文件和检查点结束消息,同时会将本次检查点中打开的文件存储到state中,当接收到检查点结束的标识时,将本次检查点内的文件全部取出协调,然后将其发送到下游,下游压缩时可以随时开始,而无需去关注可能发生的不好情况

public class CompactCoordinator extends AbstractStreamOperator<CoordinatorOutput>
        implements OneInputStreamOperator<CoordinatorInput, CoordinatorOutput> {

    private static final long serialVersionUID = 1L;

    private static final Logger LOG = LoggerFactory.getLogger(CompactCoordinator.class);
	//一个函数接口,如果正常情况下会返回FileSystem的对象,否则抛出IoException
    private final SupplierWithException<FileSystem, IOException> fsFactory;
    //目标文件大小.
    private final long targetFileSize;
	//文件系统对象,并非原生,这里F
    private transient FileSystem fileSystem; 
    private transient ListState<Map<Long, Map<String, List<Path>>>> inputFilesState; //输入文件状态
    private transient TreeMap<Long, Map<String, List<Path>>> inputFiles; //输入文件
    private transient Map<String, List<Path>> currentInputFiles;//当前输入文件
	//这个对象用来判断上游是否已经收到了当前检查点的所有数据
    private transient TaskTracker inputTaskTracker;
	
    public CompactCoordinator(
            SupplierWithException<FileSystem, IOException> fsFactory, long targetFileSize) {
        this.fsFactory = fsFactory;
        this.targetFileSize = targetFileSize;
    }
	//初始化状态
    //这个方法涉及到Flink state 当一个operator具有可恢复的state是需要重写该方法
    //每次阅读一个transformation都会去看一下这个方法,看看恢复时会恢复哪些,是否是自己想的
    @Override
    public void initializeState(StateInitializationContext context) throws Exception {
        super.initializeState(context);
		//获取文件系统
        fileSystem = fsFactory.get();
		//这里就是根据给定的名称和列表元素新建一个listStateDescriptor对象
        //这个对象的作用是一个列表的状态描述这个状态很好描述啦,上一次处理到那个文件的那个位置了
        ListStateDescriptor<Map<Long, Map<String, List<Path>>>> filesDescriptor =
                new ListStateDescriptor<>(
                        "files-state",
                        new MapSerializer<>(
                                LongSerializer.INSTANCE,
                                new MapSerializer<>(
                                        StringSerializer.INSTANCE,
                                        new ListSerializer<>(
                                                new KryoSerializer<>(
                                                        Path.class, getExecutionConfig())))));
        //给定当前输入文件的state
        inputFilesState = context.getOperatorStateStore().getListState(filesDescriptor);
        //创建一个Map
        inputFiles = new TreeMap<>();
        currentInputFiles = new HashMap<>();
        //判断是否是从状态恢复的,如果不是则gg~简单来说就是来恢复state的
        if (context.isRestored()) {
            inputFiles.putAll(inputFilesState.get().iterator().next());
        }
    }
	
    @Override
    public void processElement(StreamRecord<CoordinatorInput> element) throws Exception {
        CoordinatorInput value = element.getValue();
        //判断上游过来的消息,该消息如果是InputFile,则将其写入state
        if (value instanceof InputFile) {
            InputFile file = (InputFile) value;
            currentInputFiles
                    .computeIfAbsent(file.getPartition(), k -> new ArrayList<>())
                    .add(file.getFile());
        } else if (value instanceof EndCheckpoint) { //如果输入的是结束检查点,则开始压缩数据
            EndCheckpoint endCheckpoint = (EndCheckpoint) value;
            if (inputTaskTracker == null) {
            	//创建TaskTracker对象用来追踪上游是否已处理完当前检查点数据
                inputTaskTracker = new TaskTracker(endCheckpoint.getNumberOfTasks());
            }

            // 判断所有task是否已经全部结束,只有全部结束才会返回true
            boolean triggerCommit =
                    inputTaskTracker.add(
                            endCheckpoint.getCheckpointId(), endCheckpoint.getTaskId());
            // 当所有上游处理完发送完end chk之后,开始提交chk并进行compact 协调
            if (triggerCommit) {
                commitUpToCheckpoint(endCheckpoint.getCheckpointId());
            }
        } else {
            throw new UnsupportedOperationException("Unsupported input message: " + value);
        }
    }

    private void commitUpToCheckpoint(long checkpointId) {
    	//获取当前的输入文件
        Map<Long, Map<String, List<Path>>> headMap = inputFiles.headMap(checkpointId, true);
        //进行压缩协调
        for (Map.Entry<Long, Map<String, List<Path>>> entry : headMap.entrySet()) {
            coordinate(entry.getKey(), entry.getValue());
        }
        headMap.clear();
    }

    /** Do stable compaction coordination. */
    private void coordinate(long checkpointId, Map<String, List<Path>> partFiles) {
    	//定义一个获取文件大小的方法
        Function<Path, Long> sizeFunc =
                path -> {
                    try {
                        return fileSystem.getFileStatus(path).getLen();
                    } catch (IOException e) {
                        throw new UncheckedIOException(e);
                    }
                };

        // We need a stable compaction algorithm.
        Map<String, List<List<Path>>> compactUnits = new HashMap<>();
        
        partFiles.forEach(
                (p, files) -> {
                    // 对文件进行排序
                    files.sort(Comparator.comparing(Path::getPath));
                    //这里采用的合并算法是,targetFileSize>=sum(files.len)
                    //同一个partition下将能合并的文件放到同一个list中
                    compactUnits.put(p, BinPacking.pack(files, sizeFunc, targetFileSize));
                });

        int unitId = 0;
        for (Map.Entry<String, List<List<Path>>> unitsEntry : compactUnits.entrySet()) {
            String partition = unitsEntry.getKey();
            for (List<Path> unit : unitsEntry.getValue()) {
            	//发送unitId,partiton(path or partition),unit(可以合并的文件)
                output.collect(new StreamRecord<>(new CompactionUnit(unitId, partition, unit)));
                unitId++;
            }
        }

        LOG.debug("Coordinate checkpoint-{}, compaction units are: {}", checkpointId, compactUnits);

        // 发送检查点
        output.collect(new StreamRecord<>(new EndCompaction(checkpointId)));
    }
}

3,3 CompactOperator

这个类就是HiveStreamSink的最终operator,经过上游发送的文件就是同路径下可以压缩的文件和unitid,完成压缩流程其实就是所谓的将小文件读取出来,然后写入到一个新文件中,然后将原来的旧文件进行删除

/**
 * 这个transformation就是最后一步压缩算子了,到了这个类,Flink流式写入Hive基本可以结束了,我们继续往下看
 */
public class CompactOperator<T> extends AbstractStreamOperator<PartitionCommitInfo>
        implements OneInputStreamOperator<CoordinatorOutput, PartitionCommitInfo>, BoundedOneInput {

    private static final long serialVersionUID = 1L;
	//未压缩的文件前缀
    public static final String UNCOMPACTED_PREFIX = ".uncompacted-";
	//压缩后的文件前缀
    public static final String COMPACTED_PREFIX = "compacted-";
	//文件系统工厂对象,用于生成文件系统
    private final SupplierWithException<FileSystem, IOException> fsFactory;
    //读取工厂   这里同时需要有读取和写出,因为压缩的流程就是先读取写入新文件,然后删除旧文件
    private final CompactReader.Factory<T> readerFactory;
    //写出工厂
    private final CompactWriter.Factory<T> writerFactory;
	//文件系统.注意:非原生文件系统,不过API基本无差异,就是套了一层
    private transient FileSystem fileSystem;
	
    private transient ListState<Map<Long, List<Path>>> expiredFilesState;
    private transient TreeMap<Long, List<Path>> expiredFiles;
    private transient List<Path> currentExpiredFiles;

    private transient Set<String> partitions;

    private transient Path path;

    public CompactOperator(
            SupplierWithException<FileSystem, IOException> fsFactory,
            CompactReader.Factory<T> readerFactory,
            Path path,
            CompactWriter.Factory<T> writerFactory) {
        this.fsFactory = fsFactory;
        this.path = path;
        this.readerFactory = readerFactory;
        this.writerFactory = writerFactory;
    }

    @Override
    public void initializeState(StateInitializationContext context) throws Exception {
        super.initializeState(context);
        this.partitions = new HashSet<>();
        this.fileSystem = fsFactory.get();

        ListStateDescriptor<Map<Long, List<Path>>> metaDescriptor =
                new ListStateDescriptor<>(
                        "expired-files",
                        new MapSerializer<>(
                                LongSerializer.INSTANCE,
                                new ListSerializer<>(
                                        new KryoSerializer<>(Path.class, getExecutionConfig()))));
        this.expiredFilesState = context.getOperatorStateStore().getListState(metaDescriptor);
        this.expiredFiles = new TreeMap<>();
        this.currentExpiredFiles = new ArrayList<>();

        if (context.isRestored()) {
            this.expiredFiles.putAll(this.expiredFilesState.get().iterator().next());
        }
    }

    @Override
    public void processElement(StreamRecord<CoordinatorOutput> element) throws Exception {
        CoordinatorOutput value = element.getValue();
        //当我们收到上游的消息之后,我们开始判断本次收取到的消息是unit还是EndCompaction
        if (value instanceof CompactionUnit) {
        	//如果是unit的情况下
            CompactionUnit unit = (CompactionUnit) value;
            //operator每个subTask选择合并的实例
            if (unit.isTaskMessage(getRuntimeContext().getNumberOfParallelSubtasks(),getRuntimeContext().getIndexOfThisSubtask())) {
                String partition = unit.getPartition();
                List<Path> paths = unit.getPaths();
                //文件合并
                doCompact(partition, paths);
				//操作的分区
                this.partitions.add(partition);

                // Only after the current checkpoint is successfully executed can delete
                // the expired files, so as to ensure the existence of the files.
                // 已经处理过的文件.
                this.currentExpiredFiles.addAll(paths);
            }
        } else if (value instanceof EndCompaction) {
            LOG.info("当前检查点位是:" + ((EndCompaction) value).getCheckpointId());
            endCompaction(((EndCompaction) value).getCheckpointId());
        }
    }


    private void endCompaction(long checkpoint) {
        this.output.collect(
                new StreamRecord<>(
                        new PartitionCommitInfo(
                                checkpoint,
                                getRuntimeContext().getIndexOfThisSubtask(),
                                getRuntimeContext().getNumberOfParallelSubtasks(),
                                new ArrayList<>(this.partitions))));
        this.partitions.clear();
    }

	...........


    private void clearExpiredFiles(long checkpointId) throws IOException {
        // Don't need these metas anymore.
        NavigableMap<Long, List<Path>> outOfDateMetas = expiredFiles.headMap(checkpointId, true);
        for (List<Path> paths : outOfDateMetas.values()) {
            for (Path meta : paths) {
                fileSystem.delete(meta, true);
            }
        }
        outOfDateMetas.clear();
    }

    /**
     * Do Compaction: - Target file exists, do nothing. - Can do compaction: - Single file, do
     * atomic renaming, there are optimizations for FileSystem. - Multiple file, do reading and
     * writing.
     */
    private void doCompact(String partition, List<Path> paths) throws IOException {
        if (paths.size() == 0) {
        	//判断
            return;
        }

        Path target = createCompactedFile(paths);
        if (fileSystem.exists(target)) {
        	//判断
            return;
        }

        checkExist(paths);
		//获取压缩开始时间
        long startMillis = System.currentTimeMillis();

        boolean success = false;
        //如果文件只有一个
        if (paths.size() == 1) {
            // optimizer for single file
            success = doSingleFileMove(paths.get(0), target);
        }
		//如果文件是多个
        if (!success) {
            doMultiFilesCompact(partition, paths, target);
        }
		//完成压缩
        double costSeconds = ((double) (System.currentTimeMillis() - startMillis)) / 1000;
        LOG.info(
                "Compaction time cost is '{}S', target file is '{}', input files are '{}'",
                costSeconds,
                target,
                paths);
    }
	......(下面就是压缩的代码,没啥讲的就是reader on write)
}

总结

HiveConnector到此基本上就告一段落了,基于其实现小文件合并可以为当N次检查点后合并最小的N+1个文件 or 基于time合并文件 or 离线部署任务合并文件 思路有很多主要是要考虑性能问题以及是否符合场景要求

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2021-08-10 23:08:34  更:2021-08-10 23:09:23 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/18 21:11:58-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码