IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> 阿里云环境下搭建HadoopHA集群 -> 正文阅读

[大数据]阿里云环境下搭建HadoopHA集群

阿里云环境下搭建HadoopHA集群

1. HadoopHA介绍

1.1 hadoop高可用集群的简介

? hadoop是一个海量数据存储和计算的平台,能够存储PB级以上的数据,并且利用MapReduce可以对这些数据进行并发式计算;hadoop平台采用的是主从式架构(master/slave)即一个master和若干个slave,这个master就是namenode节点,该节点负责存储和管理元数据、配置副本策略、管理数据块的映射信息以及处理客服端的读写请求,由此可见namenode节点的压力还是比较大;众所周知,主从结构的框架虽然容易进行集群资源的管理和调度,但是有个很大的问题,也就是单点故障的问题。假如namenode节点宕机,将造成整个集群瘫痪无法工作;设计者虽然设计了Secondnamenode节点帮助namenode进行资源管理,但这毕竟是冷备份,无法做到实时热备。因此,我们利用zookeeper(集群协调者)来实现hadoop的高可用集群,即一个集群中有两个namenode,当其中一个宕机,另一个能够无缝衔接,做到实时的热备,保证大数据集群的稳定性。

1.2 HadoopHA架构

image-20210811205314030

1.3 自动故障转移工作机制

img

1.4 集群规划

这里使用三台机器搭建集群

hadoop001hadoop002hadoop003
NameNodeNameNode
JournalNodeJournalNodeJournalNode
DataNodeDataNodeDataNode
zkzkzk
ResourceManagerResourceManager
NodeManagerNodeManagerNodeManager

2. 阿里云服务器的购买

由于我还是学生,资金有限,这里选择简单低配的服务器

2.1 进入阿里云

阿里云-上云就上阿里云 (aliyun.com)

image-20210811210549738

先注册登录

image-20210811210724749

选择右上角的控制台

image-20210811210811101

点击左上角的三条横线

image-20210811210856426

选择ECS云服务器

2.1 选择服务器

点击创建服务器

image-20210811210959212

我这里选择2核8G的抢占式主机,这个比较便宜

image-20210811211433534

注意:上面的区域应该同一个(例如:可用区K,因为不同地区的实例内网不同,而hadoop集群需要使用内网搭建)。我忘记选了,后面随机给我分到一个区了。

image-20210811211656369

然后点击下面的网络配置

2.3 网络选择配置

image-20210811212103986

2.4 系统配置

image-20210811212823155

然后点击分组设置

分组设置保持默认即可,不需要配置

最后确认清晰,然后提交订单即可

image-20210811212953301

然后在控制台的左边栏点击ECS云服务器然后点击示例

image-20210811213140697

可以看出,服务器正在创建

2.5 配置服务器远程连接

等待服务器创建完成后,我们需要使用远程连接工具来连接服务器

这里我使用的是xshell进行连接

image-20210811213408970

这里我们可以看到,每个服务器有两个IP地址,一个公网ip,一个是内网ip;我们搭建hadoop集群是使用内网ip

首先检查安全组对外的22号端口是否开放

image-20210811213806183

image-20210811213907165

注意:我这里只有一个安全组,因此所有实例都配置在这个安全组里面。

image-20210811214040116

进去后检查22号端口是否开放,若没够开放,需要自己手动添加一个。

使用公网IP连接ECS

image-20210811214218888

复制这里的公网IP,然后根据自己设置的用户名和密码使用Xshell连接即可。

image-20210811214616083

这里我三台机器已经连接

3. 配置网络

3.1 配置主机名

这里由于主机名已经预设好了,因此不用配置了

3.2 配置hosts文件

[root@hadoop001 ~]# vim /etc/hosts

image-20210811215625109

需要在三台机器上都配置

3.2 检查防火墙

一般企业内部的集群之间会关闭防火墙,防止集群间通信被阻挡;企业会在外部网口处统一设置防火墙

image-20210811220101988

阿里云默认的机器防火墙是关闭的,因此可以不用管了

3.3 配置SSH

首先执行:ssh-keygen -t rsa指令

[root@hadoop001 ~]# ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/root/.ssh/id_rsa): 
Enter passphrase (empty for no passphrase): 
Enter same passphrase again: 
Your identification has been saved in /root/.ssh/id_rsa.
Your public key has been saved in /root/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256:Q7rbZb6Eu2aHpYEhZtHw97bCuIo1Tl14DALrKwiHb9U root@hadoop001
The key's randomart image is:
+---[RSA 2048]----+
|  . .o           |
|   o...          |
|  . ..o o        |
| o  +o.B .       |
|o oo..EoS o      |
|oo o ..*.+..     |
|o + + + +==      |
| o = . +=B.      |
|  . o.oo+oo.     |
+----[SHA256]-----+

连续按下三次回车,生成公钥和私钥

将公钥分发到其他集群

image-20210811220341815

以此类推,每台机器都要配置。

然后我们使用ssh 主机名 测试能够互相登录

image-20210811220726236

4. 安装JDK

由于hadoop时使用java语言编写的,因此我们需要java的运行环境

4.1 先卸载预装的jdk

image-20210811221413417

经过搜索,没有预装jdk,因此我们不用卸载了

4.2 上传软件安装包

image-20210811221508227

这里将三个安装包都上传

4.3 解压到指定目录

[root@hadoop001 software]# tar -zxvf jdk-8u231-linux-x64.tar.gz -C /opt/module/

4.4 配置环境变量

[root@hadoop001 jdk1.8.0_231]# pwd
/opt/module/jdk1.8.0_231
[root@hadoop001 jdk1.8.0_231]# vim /etc/profile
# 在profile文件的末尾添加:

export JAVA_HOME=/opt/module/jdk1.8.0_231
export PATH=$PATH:$JAVA_HOME/bin

# 保存退出后,使用source指令使得配置生效
[root@hadoop001 jdk1.8.0_231]# source /etc/profile

# 执行java -version指令
[root@hadoop001 ~]# java -version
java version "1.8.0_231"
Java(TM) SE Runtime Environment (build 1.8.0_231-b11)
Java HotSpot(TM) 64-Bit Server VM (build 25.231-b11, mixed mode)
[root@hadoop001 ~]# 
# 可以看出已经配置成功

其他两个节点也需要配置

5.搭建zookeeper集群

注意:我所有的软件都安装在/opt/module下面,可以按照个人习惯修改

5.1 解压zookeeper安装包

[root@hadoop001 software]# tar -zxvf zookeeper-3.4.10.tar.gz -C /opt/module/

[root@hadoop001 module]# ll
total 8
drwxr-xr-x  7   10  143 4096 Oct  5  2019 jdk1.8.0_231
drwxr-xr-x 10 1001 1001 4096 Mar 23  2017 zookeeper-3.4.10

5.2 配置zookeeper

(1)、在/opt/module/zookeeper-3.4.10下创建zkData目录

[root@hadoop001 zookeeper-3.4.10]# mkdir zkData

(2)、将/opt/module/zookeeper-3.4.10/conf这个目录下的zoo_sample.cfg修改为zoo.cfg

[root@hadoop001 conf]# ll
total 12
-rw-rw-r-- 1 1001 1001  535 Mar 23  2017 configuration.xsl
-rw-rw-r-- 1 1001 1001 2161 Mar 23  2017 log4j.properties
-rw-rw-r-- 1 1001 1001  922 Mar 23  2017 zoo_sample.cfg
[root@hadoop001 conf]# mv zoo_sample.cfg zoo.cfg
[root@hadoop001 conf]# 

(3)、配置zoo.cfg

# 修改dataDir
dataDir=/opt/module/zookeeper-3.4.10/zkData

# 添加集群配置
server.1=hadoop001:2888:3888
server.2=hadoop002:2888:3888
server.3=hadoop003:2888:3888

(4)、在zkData中创建myid文件

[root@hadoop001 conf]# cd /opt/module/zookeeper-3.4.10/zkData/
# 进入zkData下面创建
[root@hadoop001 zkData]# touch myid
[root@hadoop001 zkData]# vim myid 

# myid中添加服务器编号,也就上面zoo.cfg中server.后面的数字

image-20210811224208585

(5)、将zookeeper分发到其他两个节点

[root@hadoop001 module]# scp -r zookeeper-3.4.10/ hadoop002:`pwd`

(6)、修改各个节点对应的myid中的值

image-20210811224505577

5.3 启动zookeeper

我们需要在三台节点上执行:

[root@hadoop001 zookeeper-3.4.10]# bin/zkServer.sh start

image-20210811224747365

各个节点都出现QuorumPeerMain进程,并也已经选举产生了leader,因此zookeeper集群安装完成。

6. 搭建hadoopHA

6.1 解压Hadoop

[root@hadoop001 software]# tar -zxvf hadoop-2.7.2.tar.gz -C /opt/module/

6.2 配置环境变量

[root@hadoop001 software]# cd /opt/module/hadoop-2.7.2/
[root@hadoop001 hadoop-2.7.2]# pwd
/opt/module/hadoop-2.7.2
[root@hadoop001 hadoop-2.7.2]# vim /etc/profile

# 在profile文件最后添加
export HADOOP_HOME=/opt/module/hadoop-2.7.2
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

# source使文件生效
[root@hadoop001 hadoop-2.7.2]# source /etc/profile

[root@hadoop001 hadoop-2.7.2]# hadoop version
Hadoop 2.7.2
Subversion Unknown -r Unknown
Compiled by root on 2017-05-22T10:49Z
Compiled with protoc 2.5.0
From source with checksum d0fda26633fa762bff87ec759ebe689c
This command was run using /opt/module/hadoop-2.7.2/share/hadoop/common/hadoop-common-2.7.2.jar
[root@hadoop001 hadoop-2.7.2]#

# 可以看出,配置完成

6.3 修改配置文件

# 进入配置文件目录
[root@hadoop001 hadoop-2.7.2]# cd etc/hadoop/
[root@hadoop001 hadoop]# pwd
/opt/module/hadoop-2.7.2/etc/hadoop

(1)、编辑hadoop-env.sh文件

[root@hadoop001 hadoop]# vim hadoop-env.sh

# 修改JAVA_HOME配置
export JAVA_HOME=/opt/module/jdk1.8.0_231

# 修改HADOOP_CONF_DIR配置
export HADOOP_CONF_DIR=/opt/module/hadoop-2.7.2/etc/hadoop

(2)、编写slaves文件

[root@hadoop001 hadoop]# vim slaves 

# 在slaves中添加
hadoop001
hadoop002
hadoop003

image-20210811230535340

(3)、配置core-site.xml文件

# 在configuration标签中添加
	    <!-- 指定在Zookeeper上注册的节点的名字 -->
        <property>
            <name>fs.defaultFS</name>
            <value>hdfs://ns</value>
        </property>
        <!-- 指定Hadoop数据存放目录 -->
        <property>
            <name>hadoop.tmp.dir</name>
            <value>/opt/module/hadoop-2.7.2/data</value>
        </property>
        <!-- 指定zookeeper的连接地址 -->
        <property>
            <name>ha.zookeeper.quorum</name>
            <value>hadoop001:2181,hadoop002:2181,hadoop003:2181</value>
        </property>

(4)、编辑hdfs-site.xml文件

# 在configuration标签中添加
	<!-- 绑定在Zookeeper上注册的节点名 -->
	<property>
	    <name>dfs.nameservices</name>
	    <value>ns</value>
	</property>
	<!-- ns集群下有两个namenode,分别为nn1, nn2 -->
	<property>
	    <name>dfs.ha.namenodes.ns</name>
	    <value>nn1,nn2</value>
	</property>
	<!--nn1的RPC通信-->
	<property>
	    <name>dfs.namenode.rpc-address.ns.nn1</name>
	    <value>hadoop001:9000</value>
	</property>
	<!--nn1的http通信-->
	<property>
	    <name>dfs.namenode.http-address.ns.nn1</name>
	    <value>hadoop001:50070</value>
	</property>
	<!-- nn2的RPC通信地址 -->
	<property>
	    <name>dfs.namenode.rpc-address.ns.nn2</name>
	    <value>hadoop002:9000</value>
	</property>
	<!-- nn2的http通信地址 -->
	<property>
	    <name>dfs.namenode.http-address.ns.nn2</name>
	    <value>hadoop002:50070</value>
	</property>
	<!--指定namenode的元数据在JournalNode上存放的位置,这样,namenode2可以从journalnode集群里的指定位置上获取信息,达到热备效果-->
	<property>
	    <name>dfs.namenode.shared.edits.dir</name>
	    <value>qjournal://hadoop001:8485;hadoop002:8485;hadoop003:8485/ns</value>
	</property>
	<!-- 指定JournalNode在本地磁盘存放数据的位置 -->
	<property>
	    <name>dfs.journalnode.edits.dir</name>
	    <value>/opt/module/hadoop-2.7.2/data/journal</value>
	</property>
	<!-- 开启NameNode故障时自动切换 -->
	<property>
	    <name>dfs.ha.automatic-failover.enabled</name>
	    <value>true</value>
	</property>
	<!-- 配置失败自动切换实现方式 -->
	<property>
	    <name>dfs.client.failover.proxy.provider.ns</name>
	    <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
	</property>
	<!-- 配置隔离机制 -->
	<property>
	    <name>dfs.ha.fencing.methods</name>
	    <value>sshfence</value>
	</property>
	<!-- 使用隔离机制时需要ssh免登陆 -->
	<property>
	    <name>dfs.ha.fencing.ssh.private-key-files</name>
	    <value>/root/.ssh/id_rsa</value>
	</property>
	<!--配置namenode存放元数据的目录,可以不配置,如果不配置则默认放到hadoop.tmp.dir下-->
	<property>    
	    <name>dfs.namenode.name.dir</name>    
	    <value>file:///opt/module/hadoop-2.7.2/data/hdfs/name</value>    
	</property>    
	<!--配置datanode存放元数据的目录,可以不配置,如果不配置则默认放到hadoop.tmp.dir下-->
	<property>    
	    <name>dfs.datanode.data.dir</name>    
	    <value>file:///opt/module/hadoop-2.7.2/data/hdfs/data</value>    
	</property>
	<!--配置副本数量-->    
	<property>    
	    <name>dfs.replication</name>    
	    <value>3</value>    
	</property>   
	<!--设置用户的操作权限,false表示关闭权限验证,任何用户都可以操作-->               
	<property>    
	    <name>dfs.permissions</name>    
	    <value>false</value>    
	</property> 

(5)、编辑mapred-site.xml文件

[root@hadoop001 hadoop]# mv mapred-site.xml.template mapred-site.xml
[root@hadoop001 hadoop]# vim mapred-site.xml

# 在configuration标签中添加
	<property>    
	    <name>mapreduce.framework.name</name>    
	    <value>yarn</value>    
	</property>

(6)、编辑yarn-site.xml文件

# 在configuration标签中添加
	<!--配置yarn的高可用-->
	<property>
	    <name>yarn.resourcemanager.ha.enabled</name>
	    <value>true</value>
	</property>
	<!--指定两个resourcemaneger的名称-->
	<property>
	    <name>yarn.resourcemanager.ha.rm-ids</name>
	    <value>rm1,rm2</value>
	</property>
	<!--配置rm1的主机-->
	<property>
	    <name>yarn.resourcemanager.hostname.rm1</name>
	    <value>hadoop001</value>
	</property>
	<!--配置rm2的主机-->
	<property>
	    <name>yarn.resourcemanager.hostname.rm2</name>
	    <value>hadoop003</value>
	</property>
	<!--开启yarn恢复机制-->
	<property>
	    <name>yarn.resourcemanager.recovery.enabled</name>
	    <value>true</value>
	</property>
	<!--执行rm恢复机制实现类-->
	<property>
	    <name>yarn.resourcemanager.store.class</name>
	    <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
	</property>
	<!--配置zookeeper的地址-->
	<property>
	    <name>yarn.resourcemanager.zk-address</name>
	    <value>hadoop001:2181,hadoop002:2181,hadoop003:2181</value>
	</property>
	<!--执行yarn集群的别名-->
	<property>
	    <name>yarn.resourcemanager.cluster-id</name>
	    <value>ns-yarn</value>
	</property>
	<!-- 指定nodemanager启动时加载server的方式为shuffle server -->
	<property>    
	    <name>yarn.nodemanager.aux-services</name>    
	    <value>mapreduce_shuffle</value>    
	</property>  
	<!-- 指定resourcemanager地址 -->
	<property>
	    <name>yarn.resourcemanager.hostname</name>
	    <value>hadoop003</value>
	</property>

6.4 分发hadoop

# 分别拷贝到hadoop002和hadoop003
[root@hadoop001 module]# scp -r hadoop-2.7.2/ hadoop002:`pwd`

[root@hadoop001 module]# scp -r hadoop-2.7.2/ hadoop003:`pwd`

# 然后在其他两个机器上配置环境变量

6.5 启动hadoopHA集群

注意: zookeeper需要先开启

(1)、在hadoop001上格式化Zookeeper

[root@hadoop001 ~]# hdfs zkfc -formatZK

image-20210811233100823

出现上面这种,说明成功

(2)、在三台节点上启动journalNode

[root@hadoop001 ~]# hadoop-daemon.sh start journalnode
starting journalnode, logging to /opt/module/hadoop-2.7.2/logs/hadoop-root-journalnode-hadoop001.out
[root@hadoop001 ~]# jps
4945 Jps
2418 QuorumPeerMain
4890 JournalNode
[root@hadoop001 ~]# 

注意: 三台机器都要启动

image-20210811233743879

(3)、在hadoop001上执行格式化指令并启动namenode

[root@hadoop001 ~]# hadoop namenode -format

image-20210811233858702

执行成功

启动namenode

[root@hadoop001 ~]# hadoop-daemon.sh start namenode
starting namenode, logging to /opt/module/hadoop-2.7.2/logs/hadoop-root-namenode-hadoop001.out
[root@hadoop001 ~]# jps
2418 QuorumPeerMain
4890 JournalNode
5485 Jps
5407 NameNode
[root@hadoop001 ~]# 

image-20210811234049028

(4)、在hadoop002上执行格式化指令并启动namenode

[root@hadoop002 ~]# hadoop namenode -bootstrapStandBy

image-20210811234258163

格式化成功

启动namenode:

[root@hadoop002 ~]# hadoop-daemon.sh start namenode
starting namenode, logging to /opt/module/hadoop-2.7.2/logs/hadoop-root-namenode-hadoop002.out
[root@hadoop002 ~]# jps
2256 Jps
1830 QuorumPeerMain
2182 NameNode
2025 JournalNode
[root@hadoop002 ~]# 

(5)、启动三台节点的datanode

# 三台机器都要执行
[root@hadoop001 ~]# hadoop-daemon.sh start datanode

image-20210811234533814

(6)、在hadoop001和hadoop002上启动FailOverController

[root@hadoop001 ~]# hadoop-daemon.sh start zkfc
starting zkfc, logging to /opt/module/hadoop-2.7.2/logs/hadoop-root-zkfc-hadoop001.out
[root@hadoop001 ~]# jps
2418 QuorumPeerMain
5990 DFSZKFailoverController
5752 DataNode
4890 JournalNode
6074 Jps
5407 NameNode
[root@hadoop001 ~]# 

(7)、在hadoop003上执行start-yarn.sh

[root@hadoop003 ~]# start-yarn.sh 
starting yarn daemons
starting resourcemanager, logging to /opt/module/hadoop-2.7.2/logs/yarn-root-resourcemanager-hadoop003.out
hadoop002: starting nodemanager, logging to /opt/module/hadoop-2.7.2/logs/yarn-root-nodemanager-hadoop002.out
hadoop001: starting nodemanager, logging to /opt/module/hadoop-2.7.2/logs/yarn-root-nodemanager-hadoop001.out
hadoop003: starting nodemanager, logging to /opt/module/hadoop-2.7.2/logs/yarn-root-nodemanager-hadoop003.out
[root@hadoop003 ~]# jps
1856 QuorumPeerMain
2609 Jps
2214 ResourceManager
2007 JournalNode
2089 DataNode
2319 NodeManager
[root@hadoop003 ~]# 

(8)、在hadoop001上执行yarn-daemon.sh start resourcemanager

[root@hadoop001 ~]# yarn-daemon.sh start resourcemanager

(9)、最终节点状态

hadoop001: (8个进程)

image-20210811235033248

hadoop002: (7个进程)

image-20210811235109001

hadoop003: (6个进程)

image-20210811235134334

6.6 hadoopweb ui界面

这里需要先去阿里云的安全组开放50070端口,然后才能访问。

image-20210811235504261

image-20210811235523089

image-20210811235610252

上面可以看出,各个组件的webui均能访问。

6.7 测试hdfs集群

我们上传一些文件:

# 使用put指令上传hadoop安装包
[root@hadoop001 software]# hadoop fs -put hadoop-2.7.2.tar.gz /
[root@hadoop001 software]# hadoop fs -ls /
Found 1 items
-rw-r--r--   3 root supergroup  197657687 2021-08-11 23:57 /hadoop-2.7.2.tar.gz
[root@hadoop001 software]# 

webui查看

image-20210811235836226

上传成功

6.8 测试yarn集群

运行一个mapreduce任务:

# 计算圆周率
[root@hadoop001 hadoop-2.7.2]# hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar pi 20 20
Number of Maps  = 20
Samples per Map = 20
Wrote input for Map #0
Wrote input for Map #1
Wrote input for Map #2
Wrote input for Map #3
Wrote input for Map #4
Wrote input for Map #5
Wrote input for Map #6
Wrote input for Map #7
Wrote input for Map #8
Wrote input for Map #9
Wrote input for Map #10
Wrote input for Map #11
Wrote input for Map #12
Wrote input for Map #13
Wrote input for Map #14
Wrote input for Map #15
Wrote input for Map #16
Wrote input for Map #17
Wrote input for Map #18
Wrote input for Map #19
Starting Job
21/08/12 00:00:47 INFO client.ConfiguredRMFailoverProxyProvider: Failing over to rm2
21/08/12 00:00:48 INFO input.FileInputFormat: Total input paths to process : 20
21/08/12 00:00:48 INFO mapreduce.JobSubmitter: number of splits:20
21/08/12 00:00:48 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1628696898160_0001
21/08/12 00:00:48 INFO impl.YarnClientImpl: Submitted application application_1628696898160_0001
21/08/12 00:00:48 INFO mapreduce.Job: The url to track the job: http://hadoop003:8088/proxy/application_1628696898160_0001/
21/08/12 00:00:48 INFO mapreduce.Job: Running job: job_1628696898160_0001
21/08/12 00:00:55 INFO mapreduce.Job: Job job_1628696898160_0001 running in uber mode : false
21/08/12 00:00:55 INFO mapreduce.Job:  map 0% reduce 0%
21/08/12 00:01:07 INFO mapreduce.Job:  map 30% reduce 0%
21/08/12 00:01:09 INFO mapreduce.Job:  map 45% reduce 0%
21/08/12 00:01:10 INFO mapreduce.Job:  map 65% reduce 0%
21/08/12 00:01:11 INFO mapreduce.Job:  map 100% reduce 0%
21/08/12 00:01:12 INFO mapreduce.Job:  map 100% reduce 100%
21/08/12 00:01:13 INFO mapreduce.Job: Job job_1628696898160_0001 completed successfully
21/08/12 00:01:13 INFO mapreduce.Job: Counters: 49
	File System Counters
		FILE: Number of bytes read=446
		FILE: Number of bytes written=2524447
		FILE: Number of read operations=0
		FILE: Number of large read operations=0
		FILE: Number of write operations=0
		HDFS: Number of bytes read=5030
		HDFS: Number of bytes written=215
		HDFS: Number of read operations=83
		HDFS: Number of large read operations=0
		HDFS: Number of write operations=3
	Job Counters 
		Launched map tasks=20
		Launched reduce tasks=1
		Data-local map tasks=20
		Total time spent by all maps in occupied slots (ms)=253189
		Total time spent by all reduces in occupied slots (ms)=2746
		Total time spent by all map tasks (ms)=253189
		Total time spent by all reduce tasks (ms)=2746
		Total vcore-milliseconds taken by all map tasks=253189
		Total vcore-milliseconds taken by all reduce tasks=2746
		Total megabyte-milliseconds taken by all map tasks=259265536
		Total megabyte-milliseconds taken by all reduce tasks=2811904
	Map-Reduce Framework
		Map input records=20
		Map output records=40
		Map output bytes=360
		Map output materialized bytes=560
		Input split bytes=2670
		Combine input records=0
		Combine output records=0
		Reduce input groups=2
		Reduce shuffle bytes=560
		Reduce input records=40
		Reduce output records=0
		Spilled Records=80
		Shuffled Maps =20
		Failed Shuffles=0
		Merged Map outputs=20
		GC time elapsed (ms)=6425
		CPU time spent (ms)=6740
		Physical memory (bytes) snapshot=5434896384
		Virtual memory (bytes) snapshot=44580233216
		Total committed heap usage (bytes)=4205838336
	Shuffle Errors
		BAD_ID=0
		CONNECTION=0
		IO_ERROR=0
		WRONG_LENGTH=0
		WRONG_MAP=0
		WRONG_REDUCE=0
	File Input Format Counters 
		Bytes Read=2360
	File Output Format Counters 
		Bytes Written=97
Job Finished in 26.222 seconds
Estimated value of Pi is 3.17000000000000000000

这里计算成功。

6.9 关闭集群

在hadoop001上执行stop-all.sh
[root@hadoop001 ~]# stop-all.sh 
This script is Deprecated. Instead use stop-dfs.sh and stop-yarn.sh
Stopping namenodes on [hadoop001 hadoop002]
hadoop002: stopping namenode
hadoop001: stopping namenode
hadoop002: stopping datanode
hadoop001: stopping datanode
hadoop003: stopping datanode
Stopping journal nodes [hadoop001 hadoop002 hadoop003]
hadoop003: stopping journalnode
hadoop001: stopping journalnode
hadoop002: stopping journalnode
Stopping ZK Failover Controllers on NN hosts [hadoop001 hadoop002]
hadoop002: stopping zkfc
hadoop001: stopping zkfc
stopping yarn daemons
stopping resourcemanager
hadoop003: stopping nodemanager
hadoop002: stopping nodemanager
hadoop001: stopping nodemanager
hadoop003: nodemanager did not stop gracefully after 5 seconds: killing with kill -9
hadoop002: nodemanager did not stop gracefully after 5 seconds: killing with kill -9
hadoop001: nodemanager did not stop gracefully after 5 seconds: killing with kill -9
no proxyserver to stop

已经关闭了集群。

7. 注意点

1、 集群第一次启动由于需要初始化,因此启动比较麻烦。

第一次启动成功后,下次启动,在hadoop001上执行start-all.sh就可以了。

[root@hadoop001 ~]# start-all.sh 

2、启动hadoopHA集群前一定要先启动zookeeper集群

3: stopping datanode
Stopping journal nodes [hadoop001 hadoop002 hadoop003]
hadoop003: stopping journalnode
hadoop001: stopping journalnode
hadoop002: stopping journalnode
Stopping ZK Failover Controllers on NN hosts [hadoop001 hadoop002]
hadoop002: stopping zkfc
hadoop001: stopping zkfc
stopping yarn daemons
stopping resourcemanager
hadoop003: stopping nodemanager
hadoop002: stopping nodemanager
hadoop001: stopping nodemanager
hadoop003: nodemanager did not stop gracefully after 5 seconds: killing with kill -9
hadoop002: nodemanager did not stop gracefully after 5 seconds: killing with kill -9
hadoop001: nodemanager did not stop gracefully after 5 seconds: killing with kill -9
no proxyserver to stop


已经关闭了集群。

## 7. 注意点

1、 集群第一次启动由于需要初始化,因此启动比较麻烦。

第一次启动成功后,下次启动,在hadoop001上执行start-all.sh就可以了。

```shell
[root@hadoop001 ~]# start-all.sh 

2、启动hadoopHA集群前一定要先启动zookeeper集群

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2021-08-13 12:07:06  更:2021-08-13 12:12:47 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/18 21:02:22-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码