IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> RabbitMQ消息队列常见面试题 -> 正文阅读

[大数据]RabbitMQ消息队列常见面试题

一、什么是消息队列

1.1 消息队列的优点

  • 解耦:将系统按照不同的业务功能拆分,消息生产者只管把消息发布到MQ中而不用管是谁来取,消息消费者只管从MQ中获取消息而不用管是谁发布的。消息生产者和消费者都不知道对方的存在。
  • 异步:主流程只需要完成业务的核心功能,对于业务非核心功能,将消息放入消息队列中进行异步处理,减少请求的等待,提高系统的总体性能。
  • 削峰:将所有请求都写到消息队列中,消费服务器按照自身能够处理的请求数从队列中拿到请求,防止请求并发过高导致系统崩溃。

1.2 消息队列的缺点

  • 系统的可用性降低:系统引用的外部依赖越多,越容易挂掉,如果MQ服务器挂掉,那么可能导致整套系统崩溃。这是就需要考虑到如何保证消息队列的高可用。
  • 系统复杂度提高:加入消息队列之后,需要保证消息没有重复消费、如何处理消息丢失的情况、如何保证消息传递的有序性等问题;
  • 数据一致性问题:A 系统处理完了直接返回成功了,使用者都以为你这个请求就成功了;但是问题是,要是 BCD 三个系统那里,BD 两个系统写库成功了,结果 C 系统写库失败了,就会导致数据不一致了

1.3 消息队列的选型

在这里插入图片描述
(1)中小型软件公司,技术实力较为一般,建议选RabbitMQ:一方面,erlang语言天生具备高并发的特性,而且管理界面用起来十分方便。代码是开源的,而且社区十分活跃,可以解决开发过程中遇到的bug,这点对于中小型公司来说十分重要。

不考虑 rocketmq 的原因是,rocketmq是阿里出品,如果阿里放弃维护rocketmq,中小型公司一般抽不出人来进行rocketmq的定制化开发,因此不推荐。
不考虑 kafka 的原因是:中小型软件公司不如互联网公司,数据量没那么大,选消息中间件应首选功能比较完备的,所以kafka排除。

(2)大型软件公司:根据具体使用场景在rocketMq和kafka之间二选一。
一方面,大型软件公司,具备足够的资金搭建分布式环境,也具备足够大的数据量。针对rocketMQ,大型软件公司有能力对rocketMQ进行定制化开发。至于kafka,如果是大数据领域的实时计算、日志采集功能,肯定是首选kafka了。

二、RabbitMQ 构造

在这里插入图片描述
(1)生产者Publisher:生产消息,就是投递消息的一方。消息一般包含两个部分:消息体(payload)和标签(Label)

(2)消费者Consumer:消费消息,也就是接收消息的一方。消费者连接到RabbitMQ服务器,并订阅到队列上。消费消息时只消费消息体,丢弃标签。

(3)Broker服务节点:表示消息队列服务器实体。一般情况下一个Broker可以看做一个RabbitMQ服务器。

(4)Queue:消息队列,用来存放消息。一个消息可投入一个或多个队列,多个消费者可以订阅同一队列,这时队列中的消息会被平摊(轮询)给多个消费者进行处理。

(5)Exchange:交换器,接受生产者发送的消息,根据路由键将消息路由到绑定的队列上。

(6)Routing Key:路由关键字,用于指定这个消息的路由规则,需要与交换器类型和绑定键(Binding Key)联合使用才能最终生效。

(7)Binding:绑定,通过绑定将交换器和队列关联起来,一般会指定一个BindingKey,通过BindingKey,交换器就知道将消息路由给哪个队列了。

(8)Connection :网络连接,比如一个TCP连接,用于连接到具体broker

(9)Channel:信道,AMQP 命令都是在信道中进行的,不管是发布消息、订阅队列还是接收消息,这些动作都是通过信道完成。因为建立和销毁 TCP 都是非常昂贵的开销,所以引入了信道的概念,以复用一条 TCP 连接,一个TCP连接可以用多个信道。客户端可以建立多个channel,每个channel表示一个会话任务。

(10)Message:消息,由消息头和消息体组成。消息体是不透明的,而消息头则由一系列的可选属性组成,这些属性包括routing-key(路由键)、priority(相对于其他消息的优先权)、delivery-mode(指出该消息可能需要持久性存储)等。

(11)Virtual host:虚拟主机,用于逻辑隔离,表示一批独立的交换器、消息队列和相关对象。一个Virtual host可以有若干个Exchange和Queue,同一个Virtual host不能有同名的Exchange或Queue。最重要的是,其拥有独立的权限系统,可以做到 vhost 范围的用户控制。当然,从 RabbitMQ 的全局角度,vhost 可以作为不同权限隔离的手段

三、如何保证消息不被重复消费

正常情况下,消费者在消费消息后,会给消息队列发送一个确认,消息队列接收后就知道消息已经被成功消费了,然后就从队列中删除该消息,也就不会将该消息再发送给其他消费者了。不同消息队列发出的确认消息形式不同,RabbitMQ是通过发送一个ACK确认消息。但是因为网络故障,消费者发出的确认并没有传到消息队列,导致消息队列不知道该消息已经被消费,然后就再次消息发送给了其他消费者,从而造成重复消费的情况。

重复消费问题的解决思路是:保证消息的唯一性,即使多次传输,也不让消息的多次消费带来影响,也就是保证消息等幂性;幂等性指一个操作执行任意多次所产生的影响均与一次执行的影响相同。具体解决方案如下:

(1)改造业务逻辑,使得在重复消费时也不影响最终的结果。例如对SQL语句:update t1 set money = 150 where id = 1 and money = 100; 做了个前置条件判断,即 money = 100 的情况下才会做更新,更通用的是做个 version 即版本号控制,对比消息中的版本号和数据库中的版本号。

(2)基于数据库的的唯一主键进行约束。消费完消息之后,到数据库中做一个 insert 操作,如果出现重复消费的情况,就会导致主键冲突,避免数据库出现脏数据。

(3)通过记录关键的key,当重复消息过来时,先判断下这个key是否已经被处理过了,如果没处理再进行下一步。

① 通过数据库:比如处理订单时,记录订单ID,在消费前,去数据库中进行查询该记录是否存在,如果存在则直接返回。

② 使用全局唯一ID,再配合第三组主键做消费记录,比如使用 redis 的 set
结构,生产者发送消息时给消息分配一个全局ID,在每次消费者开始消费前,先去redis中查询有没有消费记录,如果消费过则不进行处理,如果没消费过,则进行处理,消费完之后,就将这个ID以k-v的形式存入redis中(过期时间根据具体情况设置)。

四、如何保证消息不丢失,进行可靠传输?

对于消息的可靠性传输,每种MQ都要从三个角度来分析:生产者丢数据、消息队列丢数据、消费者丢数据。以RabbitMQ为例:

4.1 生产者丢数据

RabbitMQ提供事务机制(transaction)和确认机制(confirm)两种模式来确保生产者不丢消息。

(1)事务机制:

发送消息前,开启事务(channel.txSelect()),然后发送消息,如果发送过程中出现什么异常,事务就会回滚(channel.txRollback()),如果发送成功则提交事务(channel.txCommit())。

该方式的缺点是生产者发送消息会同步阻塞等待发送结果是成功还是失败,导致生产者发送消息的吞吐量降下降。

    // 开启事务
    channel.txSelect
    try {
        // 发送消息
    } catch(Exception e){
        // 回滚事务
        channel.txRollback;
        //再次重试发送这条消息
        ....
    }      
    //提交事务
    channel.txCommit;

(2)确认机制:

生产环境常用的是confirm模式。生产者将信道 channel 设置成 confirm 模式,一旦 channel 进入 confirm 模式,所有在该信道上发布的消息都将会被指派一个唯一的ID,一旦消息被投递到所有匹配的队列之后,rabbitMQ就会发送一个确认给生产者(包含消息的唯一ID),这样生产者就知道消息已经正确到达目的队列了。如果rabbitMQ没能处理该消息,也会发送一个Nack消息给你,这时就可以进行重试操作。

Confirm模式最大的好处在于它是异步的,一旦发布消息,生产者就可以在等信道返回确认的同时继续发送下一条消息,当消息最终得到确认之后,生产者便可以通过回调方法来处理该确认消息。

处理AckNack的代码如下所示:

channel.addConfirmListener(new ConfirmListener() {  
    @Override  
    public void handleNack(long deliveryTag, boolean multiple) throws IOException {  
        System.out.println("nack: deliveryTag = "+deliveryTag+" multiple: "+multiple);  
    }  
    @Override  
    public void handleAck(long deliveryTag, boolean multiple) throws IOException {  
        System.out.println("ack: deliveryTag = "+deliveryTag+" multiple: "+multiple);  
    }  
}); 

4.2 消息队列丢数据

处理消息队列丢数据的情况,一般是开启持久化磁盘。持久化配置可以和生产者的 confirm 机制配合使用,在消息持久化磁盘后,再给生产者发送一个Ack信号。这样的话,如果消息持久化磁盘之前,即使rabbitMQ挂掉了,生产者也会因为收不到Ack信号而再次重发消息。

持久化设置如下(必须同时设置以下 2 个配置):

(1)创建queue的时候,将queue的持久化标志durable在设置为true,代表是一个持久的队列,这样就可以保证 rabbitmq
持久化 queue 的元数据,但是不会持久化queue里的数据;

(2)发送消息的时候将 deliveryMode 设置为 2,将消息设置为持久化的,此时 rabbitmq就会将消息持久化到磁盘上去。

4.3 消费者丢数据

消费者丢数据一般是因为采用了自动确认消息模式。该模式下,虽然消息还在处理中,但是消费者会自动发送一个确认,通知rabbitmq已经收到消息了,这时rabbitMQ就会立即将消息删除。这种情况下,如果消费者出现异常而未能处理消息,那就会丢失该消息。解决方案就是采用手动确认消息,等到消息被真正消费之后,再手动发送一个确认信号,即使中途消息没处理完,但是服务器宕机了,那rabbitmq就收不到发的ack,然后 rabbitmq 就会将这条消息重新分配给其他的消费者去处理。

五、如何保证消息的有序性

针对保证消息有序性的问题,解决方法就是保证生产者入队的顺序是有序的,出队后的顺序消费则交给消费者去保证。

(1)方法一:拆分queue,使得一个queue只对应一个消费者。由于MQ一般都能保证内部队列是先进先出的,所以把需要保持先后顺序的一组消息使用某种算法都分配到同一个消息队列中。然后只用一个消费者单线程去消费该队列,这样就能保证消费者是按照顺序进行消费的了。但是消费者的吞吐量会出现瓶颈。如果多个消费者同时消费一个队列,还是可能会出现顺序错乱的情况,这就相当于是多线程消费了
在这里插入图片描述
(2)方法二:对于多线程的消费同一个队列的情况,可以使用重试机制:比如有一个微博业务场景的操作,发微博、写评论、删除微博,这三个异步操作。如果一个消费者先执行了写评论的操作,但是这时微博都还没发,写评论一定是失败的,等一段时间。等另一个消费者,先执行发微博的操作后,再执行,就可以成功。

六、如何保证消息队列的高可用

RabbitMQ 是基于主从(非分布式)做高可用性的,RabbitMQ 有三种模式:单机模式、普通集群模式、镜像集群模式。

6.1、单机模式

一般没人生产用单机模式

6.2、普通集群模式

就是在多台机器上启动多个 RabbitMQ 实例,每个机器启动一个。我们创建的 queue,只会放在其中一个 RabbitMQ 实例上,但是每个实例都同步 queue 的元数据(元数据是 queue 的一些配置信息,通过元数据,可以找到 queue 所在实例)。消费的时候,如果连接到了另外一个实例,那么那个实例会从 queue 所在实例上拉取数据过来。

(1)优点:普通集群模式主要用于提高系统的吞吐量,可以通过添加更加的节点来线性的扩展消息队列的吞吐量,就是说让集群中多个节点来服务某个 queue 的读写操作

(2)缺点:无高可用性,queue所在的节点宕机了,其他实例就无法从那个实例拉取数据;RabbitMQ 内部也会产生大量的数据传输。
在这里插入图片描述

6.3、镜像集群模式

RabbitMQ 真正的高可用模式。镜像集群模式下,队列的元数据和消息会存在于多个实例上,每次写消息到 queue 时,会自动将消息同步到各个实例的 queue ,也就是说每个 RabbitMQ 节点都有这个 queue 的完整镜像,包含 queue 的全部数据。任何一个机器宕机了,其它机器节点还包含了这个 queue 的完整数据,其他 consumer 都可以到其它节点上去消费数据。

配置镜像队列的集群都包含一个主节点master和若干个从节点slave,slave会准确地按照master执行命令的顺序进行动作,故slave与master上维护的状态应该是相同的。如果master由于某种原因失效,那么按照slave加入的时间排序,"资历最老"的slave会被提升为新的master。

除发送消息外的所有动作都只会向master发送,然后再由master将命令执行的结果广播给各个slave。如果消费者与slave建立连接并进行订阅消费,其实质上都是从master上获取消息,只不过看似是从slave上消费而已。比如消费者与slave建立了TCP连接之后执行一个Basic.Get的操作,那么首先是由slave将Basic.Get请求发往master,再由master准备好数据返回给slave,最后由slave投递给消费者。

(1)缺点:

① 性能开销大,消息需要同步到所有机器上,导致网络带宽压力和消耗很重

② 非分布式,没有扩展性,如果 queue 的数据量大到这个机器上的容量无法容纳了,此时该方案就会出现问题了

(2)如何开启镜像集群模式呢?

在RabbitMQ 的管理控制台Admin页面下,新增一个镜像集群模式的策略,指定的时候是可以要求数据同步到所有节点的,也可以要求同步到指定数量的节点,再次创建 queue 的时候,应用这个策略,就会自动将数据同步到其他的节点上去了。
在这里插入图片描述

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2021-08-23 16:45:39  更:2021-08-23 16:46:21 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/23 13:12:26-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码