IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> Clickhouse实时消费Kafka -> 正文阅读

[大数据]Clickhouse实时消费Kafka

一、背景介绍

在这里插入图片描述
本文主要介绍通过Clickhouse自带的Kafka集成引擎,及时消费同步Kafka数据,减少数据同步链路,加快数据同步流程(如上图所示,理论上可以消除离线层)。同时利用Clickhouse快速聚合能力,加速上层数据查询分析能力。

Kafka作为消息引擎在大数据领域有着重要的作用,它通常用来接收下游产生的各种数据;ClickHouse是一个开源的用于联机分析(OLAP)的列式数据库管理系统,在大数据领域扮演越来越重要的作用,近几年在国内各大厂商应用得比较广泛。对Clickhouse的详细介绍可参考我另外篇文章ClickHouse技术分享,两者强强联合,助力数据实时分析。当然,在我们真实环境中受到Clickhouse大量小文件合并的影响,数据可能在几秒后才会合并写入完成,但在大数据OLAP引擎中,这个延时也挺低的了,对实际应用场景影响不大。

二、操作流程

在这里插入图片描述
在开始操作前我们来看下整个操作流程(这里假设你已经有了Kafka消息引擎):
1、在Clickhouse中创建Kafka外表引擎,如何创建以及参数如何设置下面会介绍,这里可以理解为消费Kafka的一个客户端
2、在Clickhouse中创建存储数据的表,用来存放从Kafka消费过来的数据,可以是本地表或者是分布式表
3、在Clickhouse中创建物化视图,物化视图相当于从Kafka和持久化表中间创建一座桥梁,不断的从Kafka消费数据并写入存储表

关于Clickhouse中的物化视图,它是数据库中的预计算逻辑+显式缓存,典型的空间换时间思路,所以用得好的话,它可以避免对基础表的频繁查询并复用结果,从而显著提升查询的性能,详情请参考ClickHouse性能优化?试试物化视图

接下来,我们详细讲一下这3个步骤如何创建:

1、在Clickhouse中创建Kafka外表引擎

CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(
    name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1],
    name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],
    ...
) ENGINE = Kafka()
SETTINGS
    kafka_broker_list = 'host:port',
    kafka_topic_list = 'topic1,topic2,...',
    kafka_group_name = 'group_name',
    kafka_format = 'data_format'[,]
    [kafka_row_delimiter = 'delimiter_symbol',]
    [kafka_schema = '',]
    [kafka_num_consumers = N,]
    [kafka_max_block_size = 0,]
    [kafka_skip_broken_messages = N,]
    [kafka_commit_every_batch = 0,]
    [kafka_thread_per_consumer = 0]

必要参数:

  • kafka_broker_list — kafka brokers服务列表,多个用逗号隔开 (例如, localhost:9092).
  • kafka_topic_list — kafka的topic名称
  • kafka_group_name —消费者group的名称,如果你不希望集群中的消息被重复消费,不要随意改动group的名字
  • kafka_format — 消息格式,使用相同的格式作为SQL格式化方法, 例如JSONEachRow。 更多的信息,可以这里看Clickhouse支持的格式

可选参数:

  • kafka_row_delimiter — 消息结束的分隔字符
  • kafka_schema — 对于kafka_format需要scheme定义得时候,其scheme由该参数定义
  • kafka_num_consumers — 每个表的消费者数量,默认是1。如果一个消费者吞吐量不够,可以通过增加该参数增加吞吐量,但是消费者的总数不应该超过topic分区的总数,因为每个分区只可以指定一个消费者
  • kafka_max_block_size — 最大批处理大小 (默认: max_block_size)
  • kafka_skip_broken_messages — 每个block能够容忍Kafka消息异常得数目,默认是0。如果kafka_skip_broken_messages = N,该引擎就会忽略N条异常的消息(一条消息就是一行数据)
  • kafka_commit_every_batch — 提交每个消费者和批处理,而不是单个提交后再写整个block(默认是0)
  • kafka_thread_per_consumer — 为每个消费者者提供独立的线程(默认是0)。当启用后,每个消费者独立并行地刷新数据(否则,来自多个消费者的行将被压缩以形成一个块)

我们创建一张测试表:

CREATE TABLE engines.user_data_kafka
(
	`name` String COMMENT '序列号ID',
    `age` Int16 COMMENT '机型',
    `create_date` DateTime COMMENT '创建时间'
)
ENGINE = Kafka
SETTINGS kafka_broker_list = 'ip:port,ip:port', 
kafka_topic_list = 'topic_name',
kafka_group_name = 'group_name',
kafka_format = 'JSONEachRow', 
kafka_max_block_size = 1048576, 
kafka_num_consumers = 1

2、在Clickhouse中创建存储数据的表

CREATE TABLE engines.user_data_storage
(
	`name` String COMMENT '序列号ID',
    `age` Int16 COMMENT '机型',
    `create_date` DateTime COMMENT '创建时间'
)
ENGINE = MergeTree                 ##这里可以是本地表或者是分布式表
ORDER BY create_date
SETTINGS index_granularity = 8192

3、在Clickhouse中创建物化视图

CREATE MATERIALIZED VIEW engines.user_data_view TO engines.user_data_storage 
AS select * from engines.user_data_kafka

完成没问题后你如果在Kafka里有实时的消息,你就可以在日志里看到以下日志: StorageKafka (user_data_kafka): Polled batch of 550 messages. Offsets position:
在这里插入图片描述
当然,这里的sql你也可以加一些条件,比如你想过滤掉一些脏数据,过滤掉创建时间超出未来1个月的数据,你可以这么写:

CREATE MATERIALIZED VIEW engines.user_data_view TO engines.user_data_storage 
AS select * from engines.user_data_kafka where create_date < addDays(today(), 30)

如果需要停止数据同步,你可以删除视图drop table engines.user_data_view ,也可以把该视图卸载 detach table engines.user_data_view ,卸载后,如果想要再次恢复,可以使用命令attach engines.user_data_view 把该视图重新装载

三、一些问题

1、Too many partitions for single INSERT block (more than 100).
单次写入分区太多,默认是100,通过在users.xml修改max_partitions_per_insert_block参数解决,不过不建议这个参数调整得太大,短时间产生得文件太多影响服务得稳定性

        <default>
            <!-- Maximum memory usage for processing single query, in bytes. -->
            <max_memory_usage>30000000000</max_memory_usage>
            <max_memory_usage_for_user>30000000000</max_memory_usage_for_user>
            <max_partitions_per_insert_block>2000</max_partitions_per_insert_block>
        </default>

2、修改kafka的auto_offset_reset参数配置从最新的消息开始消费

	 <kafka>
        <auto_offset_reset>latest</auto_offset_reset>
    </kafka>

这其实是消费客户端的一个配置参数,默认是earliest,也就是从最早的数据开始消费,如果线上kafka存储的消息比较久的话建议改成latest,不然创建完物化视图后可能会产生大量的IO告警,别问我为什么,你懂的😭

四、写在最后

实际上,在上述流程中,一个Kafka的数据管道可以对应多个物化视图,将Kafka的消息写入到不同的表中,起到数据分流的作用,如下图所示:
在这里插入图片描述

当然,Clickhouse集成的外部表引擎不止是Kafka,它能支持的种类还是挺多的,像Mysql、JDBC、HDFS、RabbitMQ、PostgreSQL等,详细可参考官网;同时它还提供了集成的外部像Mysql数据库引擎,方便你在各种系统做数据迁移同步等操作,与调度任务如DolphinScheduler结合起来用的话你可以配置各种定时调度任务,不管是做离线的还是实时的它都能提供较好的支持。

关于Mysql与Clickhouse实时同步,Clickhouse提供了MaterializedMySQL的支持(目前仍是实验性的阶段),同阿里巴巴的canal一样,通过读取mysql的binlog来实现数据实时同步,在实际测试中发现它对于有大量的update的业务并不友好,Clickhouse的整体性能会被拉跨。这其实是已经预感得到了,但这里并不是说这种方式有什么问题,只能说Clickhouse这种存储结构并不适合这种业务场景,希望未来有其他解决方案。
在这里插入图片描述

参考文章:
Clickhouse官网 https://clickhouse.tech/docs/en/engines/table-engines/integrations/kafka/
https://zhuanlan.zhihu.com/p/362809994

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2021-08-26 12:10:28  更:2021-08-26 12:10:32 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/23 13:25:20-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码