IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> 线上问题-kafka生产者发送消息总是失败 -> 正文阅读

[大数据]线上问题-kafka生产者发送消息总是失败

问题解决过程

线上一个界面发现老是没有数据,排查下来时生产者没有成功发送消息所致,报错如下:

org.springframework.kafka.core.KafkaProducerException: Failed to send; nested exception is org.apache.kafka.common.errors.TimeoutException: Failed to update metadata after 0 ms.	

我们发现配置里有一个很奇怪的参数

    config.put(ProducerConfig.MAX_BLOCK_MS_CONFIG, 0);

我们找到相关源码:

private Future<RecordMetadata> doSend(ProducerRecord<K, V> record, Callback callback) {
        TopicPartition tp = null;
        try {
            throwIfProducerClosed();
            // first make sure the metadata for the topic is available
            ClusterAndWaitTime clusterAndWaitTime;
            try {
            // -------------------------maxBlockTimeMs最终会传入ProducerConfig.MAX_BLOCK_MS_CONFIG对应值0
                clusterAndWaitTime = waitOnMetadata(record.topic(), record.partition(), maxBlockTimeMs);
        .......  

private ClusterAndWaitTime waitOnMetadata(String topic, Integer partition, long maxWaitMs) throws InterruptedException {
       ....
        do {
            log.trace("Requesting metadata update for topic {}.", topic);
            metadata.add(topic);
            int version = metadata.requestUpdate();
            sender.wakeup();
            try {
                metadata.awaitUpdate(version, remainingWaitMs);
            } catch (TimeoutException ex) {
            // ------------------主要是在这里报错了------------
                // Rethrow with original maxWaitMs to prevent logging exception with remainingWaitMs
                throw new TimeoutException("Failed to update metadata after " + maxWaitMs + " ms.");
            }
            ....

我们找到max.block.ms的作用

public static final String MAX_BLOCK_MS_CONFIG = "max.block.ms";
    private static final String MAX_BLOCK_MS_DOC = "The configuration controls how long <code>KafkaProducer.send()</code> and <code>KafkaProducer.partitionsFor()</code> will block."
                                                    + "These methods can be blocked either because the buffer is full or metadata unavailable."
                                                    + "Blocking in the user-supplied serializers or partitioner will not be counted against this timeout.";

问题很清晰了, send时发现要更新metadata,更新metadata时0ms超时报错了!

故把该值改为1000即可

    config.put(ProducerConfig.MAX_BLOCK_MS_CONFIG, 1000);

深入思考这个问题

这个功能是由界面点击时触发的,但运营人员很少会去使用这个功能,故猜测太长时间没用,比如超过9分钟(connections.max.idle.ms), 导致连接关闭,下次send时需要重新拉取metadata导致,但实际是这样的吗?no

我们把connections.max.idle.ms=1000,期待1s后send失败,但实际上还是需要空闲好几分钟后send才会失败,说明connections.max.idle.ms这个参数不是报错的直接原因!

通过DEBUG日志, 我们发现超时连接断开时,会触发metadata的更新;当metadata.max.age.ms超时时也会触发metadate更新。我们再深入研究下去

调试时发现抛出报错的日志前面,有如下所示日志

[2021-08-25 22:28:15,039] [kafka-producer-network-thread | producer-1] [DEBUG] org.apache.kafka.clients.Metadata - Removing unused topic InnerProcess from the metadata list, expiryMs 1629901694499 now 1629901695039

这句话是在下面这个地方打印的

org.apache.kafka.clients.Metadata#update

public static final long TOPIC_EXPIRY_MS = 5 * 60 * 1000;

public synchronized void update(Cluster newCluster, Set<String> unavailableTopics, long now) {
       ....

// producer默认为true,consumer默认为false
        if (topicExpiryEnabled) {
            // Handle expiry of topics from the metadata refresh set.
            for (Iterator<Map.Entry<String, Long>> it = topics.entrySet().iterator(); it.hasNext(); ) {
                Map.Entry<String, Long> entry = it.next();
                long expireMs = entry.getValue();
                // 第一次需要立即更新为-1
                if (expireMs == TOPIC_EXPIRY_NEEDS_UPDATE)
                // 第一次设置了5分钟后失效
                    entry.setValue(now + TOPIC_EXPIRY_MS);
                else if (expireMs <= now) {
                // 达到失效时间后,topic就会删除,下次send需要重新更新metadata了
                    it.remove();
                    log.debug("Removing unused topic {} from the metadata list, expiryMs {} now {}", entry.getKey(), expireMs, now);
                }
            }
        }
        .....

我们可以看到topic其实是设置了失效时间的,默认5分钟,当第一次调用send(),失效时间为-1,并且会触发更新metadata,即会修改为entry.setValue(now + TOPIC_EXPIRY_MS),5分钟后失效,但5分钟后不会立即失效,若等到9分钟连接断开时,会走到上面的代码:

	 if (expireMs <= now) {
                // 达到失效时间后,topic就会删除,下次send需要重新更新metadata了
                    it.remove();
                    log.debug("Removing unused topic {} from the metadata list, expiryMs {} now {}", entry.getKey(), expireMs, now);
                }

即会将topic移除了,故9分钟后再次send时,需要更新metadata,但max.block.ms=0导致超时报错,即发送失败!

我们可以做这样的试验, 修改下面2个参数

        // 在topic失效之前停掉
        config.put(ProducerConfig.CONNECTIONS_MAX_IDLE_MS_CONFIG, 4 * 60 * 1000);
        // 10小时才更新一次metadata
        config.put(ProducerConfig.METADATA_MAX_AGE_CONFIG, 10 * 60 * 60 * 1000);

然后每大于5分钟的时间间隔,send一次

@Scheduled(fixedDelay = 9 * 60 * 1000 + 10000)
    public void sendKafkaASync() {
        kafkaService.sendKafkaASync();
    }

发现除了第一次失败后,就不会失败了!!!

因此,试验下来,是由于max.block.ms设置过小,导致更新metadata超时,导致send失败;更深入的:
1)首次发送没有topic数据,send调用时需要首先更新metadata时间不够,导致超时;
2)后面发送失败,是因为topic已超时,并在之后,connections.max.idle.ms或metadata.max.age.ms到时间触发metadata更新,而把超时的topic移除了。topic移除后,再进行send,有需要先更新metadata,进而还是会失败;

总体上而言,send的间隔不要超过5分钟最好,超过5分钟不调用send, 存在一定的可能导致topic被移除,从而下次send需要重新拉去metadata

附录:相关代码

pom.xml

<parent>
        <artifactId>spring-boot-starter-parent</artifactId>
        <groupId>org.springframework.boot</groupId>
        <version>2.1.5.RELEASE</version>
    </parent>

    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
            <exclusions>
                <!-- logback to log4j2 -->
                <exclusion>
                    <groupId>org.springframework.boot</groupId>
                    <artifactId>spring-boot-starter-logging</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-log4j2</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.kafka</groupId>
            <artifactId>spring-kafka</artifactId>
            <version>2.2.5.RELEASE</version>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
        </dependency>

        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <version>1.18.12</version>
        </dependency>

    </dependencies>

log4j2.xml

<?xml version="1.0" encoding="UTF-8"?>
<!-- status指定log4j本身的日志打印级别 -->
<!-- 配置文件发生修改,在monitorInterval时间即5s内,重新加载,无需重启 -->
<Configuration status="DEBUG" monitorInterval="5">
        .....

    <Loggers>
        <Logger name="org.springframework" level="INFO" />
        <Logger name="com.ydfind" level="DEBUG" />
        <Logger name="org.apache.kafka.clients.consumer" level="WARN"/>
        <Logger name="org.apache.kafka.clients.FetchSessionHandler" level="WARN" />
        <Logger name="org.apache.kafka.clients.producer.KafkaProducer" level="TRACE" />
    </Loggers>
</Configuration>

application.yml

logging:
  config: classpath:log4j2.xml

KafkaConfig.java

package com.ydfind.config;

import org.apache.kafka.clients.CommonClientConfigs;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.config.SaslConfigs;
import org.apache.kafka.common.security.auth.SecurityProtocol;
import org.apache.kafka.common.security.scram.ScramLoginModule;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.kafka.common.serialization.StringSerializer;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory;
import org.springframework.kafka.config.KafkaListenerContainerFactory;
import org.springframework.kafka.core.DefaultKafkaConsumerFactory;
import org.springframework.kafka.core.DefaultKafkaProducerFactory;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.core.ProducerFactory;
import org.springframework.kafka.listener.ConcurrentMessageListenerContainer;
import org.springframework.web.context.request.FacesRequestAttributes;

import java.awt.datatransfer.StringSelection;
import java.util.HashMap;
import java.util.Map;

@Configuration
@EnableKafka
public class KafkaConfig {

    @Bean
    public KafkaTemplate<String, String> kafkaTemplate() {
        return new KafkaTemplate<>(producerFactory());
    }

    private ProducerFactory<String, String> producerFactory() {
        return new DefaultKafkaProducerFactory<>(producerConfigs());
    }

    private Map<String, Object> producerConfigs() {
        Map<String, Object> config = new HashMap<>();
        config.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
        config.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        config.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
//
//        config.put(CommonClientConfigs.SECURITY_PROTOCOL_CONFIG, SecurityProtocol.SASL_PLAINTEXT.name);
//        config.put(SaslConfigs.SASL_JAAS_CONFIG, "org.apache.kafka.common.security.scram.ScramLoginModule required username=\"xxx\" password=\"xxx\"");
//        config.put(SaslConfigs.SASL_MECHANISM, "SCRAM-SHA-256");

        config.put(ProducerConfig.MAX_BLOCK_MS_CONFIG, 0);
//        config.put(ProducerConfig.CONNECTIONS_MAX_IDLE_MS_CONFIG, 1 * 60 * 1000);
//        config.put(ProducerConfig.METADATA_MAX_AGE_CONFIG, 30 * 60 * 1000);

//        config.put(ProducerConfig.CONNECTIONS_MAX_IDLE_MS_CONFIG, 100 * 60 * 1000);
//        config.put(ProducerConfig.METADATA_MAX_AGE_CONFIG, 1 * 60 * 1000);


        // ----貌似下面会10小时内都成功!!!!---------------------------
        // 4min时connect断掉,5min时topic失效,6min时send()成功,10min时把topic失效时间弄从15min!!!!!
        // 是send()导致entry.getValue() == TOPIC_EXPIRY_NEEDS_UPDATE,还是connect断开的更新topic导致呢!!!
        // topics.put(topic, TOPIC_EXPIRY_NEEDS_UPDATE)-------------send时会把topic的失效时间弄成-1----相当于续命,不会失效

        // 在topic失效之前停掉
        config.put(ProducerConfig.CONNECTIONS_MAX_IDLE_MS_CONFIG, 4 * 60 * 1000);
        // 10小时才更新一次metadata
        config.put(ProducerConfig.METADATA_MAX_AGE_CONFIG, 10 * 60 * 60 * 1000);
        return config;
    }
}

KafkaService

package com.ydfind.service;

import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.support.SendResult;
import org.springframework.stereotype.Component;
import org.springframework.util.concurrent.ListenableFuture;

import java.util.concurrent.ExecutionException;
import java.util.concurrent.atomic.AtomicInteger;

@Component
@Slf4j
public class KafkaService {

    @Autowired
    private KafkaTemplate<String, String> kafkaTemplate;

    public String sendKafkaSync() {
        ListenableFuture<SendResult<String, String>> send = kafkaTemplate.send("InnerProcess", "sendKafkaSync");
        String msg = "";
        try {
            SendResult<String, String> stringStringSendResult = send.get();
            msg += stringStringSendResult.getRecordMetadata().offset();
        } catch (InterruptedException e) {
            e.printStackTrace();
            return e.getMessage();
        } catch (ExecutionException e) {
            e.printStackTrace();
            return e.getMessage();
        }
        return msg;
    }

    private AtomicInteger total = new AtomicInteger();
    private AtomicInteger success = new AtomicInteger();

    public void sendKafkaASync() {
        ListenableFuture<SendResult<String, String>> send = kafkaTemplate.send("InnerProcess", "sendKafkaSync");
        send.completable().whenCompleteAsync((n, e) -> {
            total.getAndIncrement();
            if (null != e) {
                e.printStackTrace();
            } else {
                success.getAndIncrement();
            }
            log.info("\n-------------------total = {}, success = {}", total.get(), success.get());
        });
    }
}

MainApp.java

package com.ydfind;


import com.ydfind.service.KafkaService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.scheduling.annotation.EnableScheduling;
import org.springframework.scheduling.annotation.Scheduled;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;

@SpringBootApplication
@RestController
@EnableScheduling
public class MainApp {

    public static void main(String[] args) {
        SpringApplication.run(MainApp.class, args);
    }

    @Autowired
    private KafkaService kafkaService;

    @GetMapping("sendKafka")
    public String sendKafka() {
        return kafkaService.sendKafkaSync();
    }

    @Scheduled(fixedDelay = 9 * 60 * 1000 + 10000)
    public void sendKafkaASync() {
        kafkaService.sendKafkaASync();
    }
}

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2021-08-27 11:55:47  更:2021-08-27 11:57:12 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/18 16:50:02-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码