本文主要内容为:
通过spark提取hive中的数据
先说一下主要的需求:从数据库种取姓名和编号,如果num为111,或者222,那编号为id,如果id为5为去除前两位,如果id为3位直接用; 如果num不等于111,或者222那么编号取id, 返回结果name_bianhao
(1)准备
SparkSession session = SparkConfig.Instance();
Encoder<String> stringEncoder = Encoders.STRING();
JavaSparkContext jsc = SparkConfig.Instance(session);
(2)提取
private static JavaPairRDD<String, String> getnameId (SparkSession session, String table_name, Encoder < String > stringEncoder, String time){
session.sql("use shujukuName");
//获取表中某个分区的字段
//此处示例为提取表table_name的time分区中的name、Id和num字段,且保证name不为空
JavaPairRDD<String, String> name_bianhao= session.sql("select name,Id,num from " + table_name+ " where p = '" + time + "' and name!= ''")
//对提取到的两个数据都做处理
.map(new MapFunction<Row, String>() {
@Override
public String call(Row value) throws Exception {
//返回两个字段name Id num
return value.getString(0) + "," + value.getString(1)+ "," + value.getString(2);
}
}, stringEncoder).toJavaRDD().filter(new Function<String, Boolean>() {
@Override
//过滤字段长度正确的数据
public Boolean call(String v1) throws Exception {
String[] split = v1.split(",", -1);
return split[0].length() >0 && split[1].length() >= 3 &&split[2].length()==3;
}
//对数据按照按照逗号分割
}).map(new Function<String, String[]>() {
@Override
public String[] call(String s) throws Exception {
return s.split(",", -1);
}
}).mapToPair(new PairFunction<String[], String, String>() {
@Override
public Tuple2<String, String> call(String[] arr) throws Exception {
String number = "";
if ("111".equals(arr[2]) || "222".equals(arr[2])) {
if (arr[1].length() == 5) {
number = arr[1].substring(2, 5);
} else if (arr[1].length() == 3) {
number = arr[1];
}
} else if (!"111".equals(arr[2]) && !"222".equals(arr[2])) {
number = arr[2];
}
return new Tuple2<>( arr[0],number);
}
}).distinct();
return name_bianhao;
}
|