IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> 奇怪!备库为什么会延迟好几个小时? -> 正文阅读

[大数据]奇怪!备库为什么会延迟好几个小时?

抛出问题:如果备库执行日志的速度持续低于主库生成日志的速度,那这个延迟就有可能成了小时级别。而且对于一个压力持续比较高的主库来说,备库很可能永远都追不上主库的节奏。那么MySQL有什么应对措施吗?

并行复制概念引入

首先回顾下MySQL主备一致的流程图:
在这里插入图片描述

图 1 主备流程图

谈到主备的并行复制能力,我们要关注的是图中黑色的两个箭头。一个箭头代表了客户端写入主库,另一箭头代表的是备库上 sql_thread 执行中转日志(relay log)。如果用箭头的粗细来代表并行度的话,那么真实情况就如图 1 所示,第一个箭头要明显粗于第二个箭头。

在主库上,影响并发度的原因就是各种锁了。由于 InnoDB 引擎支持行锁,除了所有并发事务都在更新同一行(热点行)这种极端场景外,它对业务并发度的支持还是很友好的。所以,你在性能测试的时候会发现,并发压测线程 32 就比单线程时,总体吞吐量高。

而日志在备库上的执行,就是图中备库上 sql_thread 更新数据 (DATA) 的逻辑。如果是用单线程的话,就会导致备库应用日志不够快,造成主备延迟

在官方的 5.6 版本之前,MySQL 只支持单线程复制,由此在主库并发高、TPS 高时就会出现严重的主备延迟问题。从单线程复制到最新版本的多线程复制,中间的演化经历了好几个版本。接下来,我就跟你说说 MySQL 多线程复制的演进过程。

所有的多线程复制机制,都是要把图 1 中只有一个线程的 sql_thread,拆成多个线程,也就是都符合下面的这个模型:
在这里插入图片描述

图 2 多线程模型

图 2 中,coordinator 就是原来的 sql_thread, 不过现在它不再直接更新数据了,只负责读取中转日志和分发事务。真正更新日志的,变成了 worker 线程。而 work 线程的个数,就是由参数 slave_parallel_workers 决定的。根据我的经验,把这个值设置为线程总数的25~50%比较好,毕竟备库还有可能要提供读查询,不能把 CPU 都吃光了。

问题一:事务能不能按照轮询的方式分发给各个 worker,也就是第一个事务分给 worker_1,第二个事务发给 worker_2 呢?
不行🙅。因为,事务被分发给 worker 以后,不同的 worker 就独立执行了。但是,由于 CPU 的调度策略,很可能第二个事务最终比第一个事务先执行。而如果这时候刚好这两个事务更新的是同一行,也就意味着,同一行上的两个事务,在主库和备库上的执行顺序相反,会导致主备不一致的问题

问题二:同一个事务的多个更新语句,能不能分给不同的 worker 来执行呢?
不行🙅。举个例子,一个事务更新了表 t1 和表 t2 中的各一行,如果这两条更新语句被分到不同 worker 的话,虽然最终的结果是主备一致的,但如果表 t1 执行完成的瞬间,备库上有一个查询,就会看到这个事务“更新了一半的结果”,破坏了事务逻辑的原子性

综上coordinator 在分发的时候,需要满足以下这两个基本要求:

  • 不能造成更新覆盖。这就要求更新同一行的两个事务,必须被分发到同一个 worker 中
  • 同一个事务不能被拆开,必须放到同一个 worker 中

并行复制策略设计

官方 MySQL 5.5 版本及以前是不支持并行复制的。那么线上业务又需要并行复制策略支持的话,你可以自己设计一个,下面从按表分发、按行分发分别来阐述。😎

按表分发策略

按表分发事务的基本思路是,如果两个事务更新不同的表,它们就可以并行。因为数据是存储在表里的,所以按表分发,可以保证两个 worker 不会更新同一行。当然,如果有跨表的事务,还是要把两张表放在一起考虑的。

在这里插入图片描述

图 3 按表并行复制程模型

每个 worker 线程对应一个 hash 表,用于保存当前正在这个 worker 的“执行队列”里的事务所涉及的表。hash 表的 key 是“库名. 表名”,value 是一个数字,表示队列中有多少个事务修改这个表。在有事务分配给 worker 时,事务里面涉及的表会被加到对应的 hash 表中。worker 执行完成后,这个表会被从 hash 表中去掉

假设在图中的情况下,coordinator 从中转日志中读入一个新事务 T,这个事务修改的行涉及到表 t1 和 t3。
现在我们用事务 T 的分配流程,来看一下分配规则。

  • 由于事务 T 中涉及修改表 t1,而 worker_1 队列中有事务在修改表 t1,事务 T 和队列中的某个事务要修改同一个表的数据,这种情况我们说事务 T 和 worker_1 是冲突的。
  • 按照这个逻辑,顺序判断事务 T 和每个 worker 队列的冲突关系,会发现事务 T 跟 worker_2 也冲突。事务 T 跟多于一个 worker 冲突,coordinator 线程就进入等待
  • 每个 worker 继续执行,同时修改 hash_table。假设 hash_table_2 里面涉及到修改表 t3 的事务先执行完成,就会从 hash_table_2 中把 db1.t3 这一项去掉。
  • 这样 coordinator 会发现跟事务 T 冲突的 worker 只有 worker_1 了,因此就把它分配给 worker_1。

coordinator 继续读下一个中转日志,继续分配事务。

每个事务在分发的时候,跟所有 worker 的冲突关系包括以下三种情况:

  • 如果跟所有 worker 都不冲突,coordinator 线程就会把这个事务分配给最空闲的 woker;
  • 如果跟多于一个 worker 冲突,coordinator 线程就进入等待状态,直到和这个事务存在冲突关系的 worker 只剩下 1 个;
  • 如果只跟一个 worker 冲突,coordinator 线程就会把这个事务分配给这个存在冲突关系的 worker

这个按表分发的方案,在多个表负载均匀的场景里应用效果很好。但是,如果碰到热点表,比如所有的更新事务都会涉及到某一个表的时候,所有事务都会被分配到同一个 worker 中,就变成单线程复制了

按行分发策略

要解决热点表的并行复制问题,就需要一个按行并行复制的方案。按行复制的核心思路是:如果两个事务没有更新相同的行,它们在备库上可以并行执行。显然,这个模式要求 binlog 格式必须是 row

我们判断一个事务 T 和 worker 是否冲突,用的就规则就不是“修改同一个表”,而是“修改同一行”。
按行复制和按表复制的数据结构差不多,也是为每个 worker,分配一个 hash 表。只是要实现按行分发,这时候的 key,就必须是“库名 + 表名 + 唯一键的值”
但是,这个“唯一键”只有主键 id 还是不够的,我们还需要考虑下面这种场景,表 t1 中除了主键,还有唯一索引 a:

CREATE TABLE `t1` (
 `id` int(11) NOT NULL,
 `a` int(11) DEFAULT NULL,
 `b` int(11) DEFAULT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `a` (`a`)
) ENGINE=InnoDB;
insert into t1 values(1,1,1),(2,2,2),(3,3,3),(4,4,4),(5,5,5);

在这里插入图片描述

图 4 唯一键冲突示例

这两个事务要更新的行的主键值不同,但是如果它们被分到不同的 worker,就有可能 session B 的语句先执行。这时候 id=1 的行的 a 的值还是 1,就会报唯一键冲突。

因此,基于行的策略,事务 hash 表中还需要考虑唯一键,即 key 应该是“库名 + 表名 + 索引 a 的名字 +a 的值”

在上面这个例子中,我要在表 t1 上执行 update t1 set a=1 where id=2 语句,在 binlog 里面记录了整行的数据修改前各个字段的值,和修改后各个字段的值。

因此,coordinator 在解析这个语句的 binlog 的时候,这个事务的 hash 表就有三个项:

  • key=hash_func(db1+t1+“PRIMARY”+2), value=2; 这里 value=2 是因为修改前后的行 id 值不变,出现了两次。
  • key=hash_func(db1+t1+“a”+2), value=1,表示会影响到这个表 a=2 的行。
  • key=hash_func(db1+t1+“a”+1), value=1,表示会影响到这个表 a=1 的行。

相比于按表并行分发策略,按行并行策略在决定线程分发的时候,需要消耗更多的计算资源。你可能也发现了,这两个方案其实都有一些约束条件:

  • 要能够从 binlog 里面解析出表名、主键值和唯一索引的值。也就是说,主库的 binlog 格式必须是 row;
  • 表必须有主键;
  • 不能有外键。表上如果有外键,级联更新的行不会记录在 binlog 中,这样冲突检测就不准确。

对比按表分发和按行分发这两个方案的话,按行分发策略的并行度更高。不过,如果是要操作很多行的大事务的话,按行分发的策略有两个问题

  • 耗费内存。比如一个语句要删除 100 万行数据,这时候 hash 表就要记录 100 万个项。
  • 耗费 CPU。解析 binlog,然后计算 hash 值,对于大事务,这个成本还是很高的。

所以,我在实现这个策略的时候会设置一个阈值,单个事务如果超过设置的行数阈值(比如,如果单个事务更新的行数超过 10 万行),就暂时退化为单线程模式,退化过程的逻辑大概是这样的:

  • coordinator 暂时先 hold 住这个事务;
  • 等待所有 worker 都执行完成,变成空队列;
  • coordinator 直接执行这个事务;
  • 恢复并行模式。

MySQL 5.6 版本的并行复制策略

官方 MySQL5.6 版本,支持了并行复制,只是支持的粒度是按库并行。用于决定分发策略的 hash 表里,key 就是数据库名。
这个策略的并行效果,取决于压力模型。如果在主库上有多个 DB,并且各个 DB 的压力均衡,使用这个策略的效果会很好

相比于按表和按行分发,这个策略有两个优势:

  • 构造 hash 值的时候很快,只需要库名;而且一个实例上 DB 数也不会很多,不会出现需要构造 100 万个项这种情况。
  • 不要求 binlog 的格式。因为 statement 格式的 binlog 也可以很容易拿到库名。

如果你的主库上的表都放在同一个 DB 里面,这个策略就没有效果了;或者如果不同 DB 的热点不同,比如一个是业务逻辑库,一个是系统配置库,那也起不到并行的效果

MariaDB 的并行复制策略

MariaDB 的并行复制策略利用了组提交的概念:

  • 能够在同一组里提交的事务,一定不会修改同一行;
  • 主库上可以并行执行的事务,备库上也一定是可以并行执行的。

在实现上,MariaDB 是这么做的:

  • 在一组里面一起提交的事务,有一个相同的 commit_id,下一组就是 commit_id+1;
  • commit_id 直接写到 binlog 里面;
  • 传到备库应用的时候,相同 commit_id 的事务分发到多个 worker 执行;
  • 这一组全部执行完成后,coordinator 再去取下一批。

这个策略有一个问题,它并没有实现“真正的模拟主库并发度”这个目标。在主库上,一组事务在 commit 的时候,下一组事务是同时处于“执行中”状态的。

假设了三组事务在主库的执行情况,你可以看到在 trx1、trx2 和 trx3 提交的时候,trx4、trx5 和 trx6 是在执行的。这样,在第一组事务提交完成的时候,下一组事务很快就会进入 commit 状态。

在这里插入图片描述

图 5 主库并行事务

按照 MariaDB 的并行复制策略,备库上的执行效果如图 6 所示。
在这里插入图片描述

图 6 MariaDB 并行复制,备库并行效果

在备库上执行的时候,要等第一组事务完全执行完成后,第二组事务才能开始执行,这样系统的吞吐量就不够。
另外,这个方案很容易被大事务拖后腿
。假设 trx2 是一个超大事务,那么在备库应用的时候,trx1 和 trx3 执行完成后,就只能等 trx2 完全执行完成,下一组才能开始执行。这段时间,只有一个 worker 线程在工作,是对资源的浪费。

MySQL 5.7 的并行复制策略

在 MariaDB 并行复制实现之后,官方的 MySQL5.7 版本也提供了类似的功能,由参数 slave-parallel-type 来控制并行复制策略:

  • 配置为 DATABASE,表示使用 MySQL 5.6 版本的按库并行策略;
  • 配置为 LOGICAL_CLOCK,表示的就是类似 MariaDB 的策略。不过,MySQL 5.7 这个策略,针对并行度做了优化。这个优化的思路也很有趣儿。

考虑一个问题:同时处于“执行状态”的所有事务,是不是可以并行?
不能。因为,这里面可能有由于锁冲突而处于锁等待状态的事务。如果这些事务在备库上被分配到不同的 worker,就会出现备库跟主库不一致的情况。而上面提到的 MariaDB 这个策略的核心,是“所有处于 commit”状态的事务可以并行。事务处于 commit 状态,表示已经通过了锁冲突的检验了

在这里插入图片描述

图 7 两阶段提交细化过程图

不用等到 commit 阶段,只要能够到达 redo log prepare 阶段,就表示事务已经通过锁冲突的检验了

因此,MySQL 5.7 并行复制策略的思想是:

  • 同时处于 prepare 状态的事务,在备库执行时是可以并行的;

  • 处于 prepare 状态的事务,与处于 commit 状态的事务之间,在备库执行时也是可以并行的

  • binlog_group_commit_sync_delay 参数,表示延迟多少微秒后才调用 fsync;

  • binlog_group_commit_sync_no_delay_count 参数,表示累积多少次以后才调用 fsync。

这两个参数是用于故意拉长 binlog 从 write 到 fsync 的时间,以此减少 binlog 的写盘次数。在 MySQL 5.7 的并行复制策略里,它们可以用来制造更多的“同时处于 prepare 阶段的事务”。这样就增加了备库复制的并行度

MySQL 5.7.22 的并行复制策略

MySQL 5.7.22 版本里,MySQL 增加了一个新的并行复制策略,基于 WRITESET 的并行复制。

新增了一个参数 binlog-transaction-dependency-tracking,用来控制是否启用这个新策略。这个参数的可选值有以下三种。

  • COMMIT_ORDER,表示的就是前面介绍的,根据同时进入 prepare 和 commit 来判断是否可以并行的策略。
  • WRITESET,表示的是对于事务涉及更新的每一行,计算出这一行的 hash 值,组成集合 writeset。如果两个事务没有操作相同的行,也就是说它们的 writeset 没有交集,就可以并行。
  • WRITESET_SESSION,是在 WRITESET 的基础上多了一个约束,即在主库上同一个线程先后执行的两个事务,在备库执行的时候,要保证相同的先后顺序。

当然为了唯一标识,这个 hash 值是通过“库名 + 表名 + 索引名 + 值”计算出来的。如果一个表上除了有主键索引外,还有其他唯一索引,那么对于每个唯一索引,insert 语句对应的 writeset 就要多增加一个 hash 值。

这跟我们前面介绍的基于 MySQL 5.5 版本的按行分发的策略是差不多的。不过,MySQL 官方的这个实现还是有很大的优势:

  • writeset 是在主库生成后直接写入到 binlog 里面的,这样在备库执行的时候,不需要解析 binlog 内容(event 里的行数据),节省了很多计算量;
  • 不需要把整个事务的 binlog 都扫一遍才能决定分发到哪个 worker,更省内存;
  • 由于备库的分发策略不依赖于 binlog 内容,所以 binlog 是 statement 格式也是可以的。

因此,MySQL 5.7.22 的并行复制策略在通用性上还是有保证的。
当然,对于“表上没主键”和“外键约束”的场景,WRITESET 策略也是没法并行的,也会暂时退化为单线程模型

给出一道思考题:假设一个 MySQL 5.7.22 版本的主库,单线程插入了很多数据,过了 3 个小时后,我们要给这个主库搭建一个相同版本的备库。这时候,你为了更快地让备库追上主库,要开并行复制。

在 binlog-transaction-dependency-tracking 参数的 COMMIT_ORDER、WRITESET 和 WRITE_SESSION 这三个取值中,你会选择哪一个呢?你选择的原因是什么?如果设置另外两个参数,你认为会出现什么现象呢?

这个问题的答案:参数设置为 WRITESET。

由于主库是单线程压力模式,所以每个事务的 commit_id 都不同,那么设置为 COMMIT_ORDER 模式的话,从库也只能单线程执行。
由于 WRITESET_SESSION 模式要求在备库应用日志的时候,同一个线程的日志必须与主库上执行的先后顺序相同,也会导致主库单线程压力模式下退化成单线程复制。

所以,应该将 binlog-transaction-dependency-tracking 设置为 WRITESET。

总结:
本章节是对数据库大佬“丁奇”的学习总结!这是本人认为的一个比较不错的学习资料,特对内容进行总结,方便各位进行学习!
觉得有用的客官可以点赞、关注下各位的点赞+关注就是我持续更新的动力源泉! 🙏

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2021-09-06 11:13:37  更:2021-09-06 11:13:39 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/18 13:39:06-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码