IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> Apache Spark 实时监控设置 自定义实现KafkaSink 以及如何通过业务场景来找到我们需要修改的位置 -> 正文阅读

[大数据]Apache Spark 实时监控设置 自定义实现KafkaSink 以及如何通过业务场景来找到我们需要修改的位置

Apache Spark 实时监控设置 自定义实现KafkaSink 以及如何通过业务场景来找到我们需要修改的位置

背景

一个特殊背景的甲方大数据计算平台。95%的 计算任务都是跑的Spark任务。现在需要我们扩充Spark的计算的实时运行指标监控功能。

1:Spark的监控指标介绍

相信从事大数据的小伙伴 或者 阅读过大数据生态系统的组件源代码的同学 都应该知道 HDFS,Hbase等Hadoop生态组件 都有自己的监控指标(Metrics)。 相同的Spark生态也是一样

2:Spark 阅读源码

PS: 相信大家都是有过Spark源码阅读的经验的 这里就不多废话了。

2.1: 首先进入到Spark的DAGSchedulerEventProcessLoop这个类中

方法onReceive 被调用来处理不同的Even

override def onReceive(event: DAGSchedulerEvent): Unit = {
        val timerContext = timer.time()
        try {
            /**
             *   这个  方法中会根据 event 类型不同去调用 case by case dagScheduler 的不同 handle....方法
             */
            doOnReceive(event)
        } finally {
            timerContext.stop()
        }
    }

2.1.1 doOnReceive 方法

private def doOnReceive(event: DAGSchedulerEvent): Unit = event match {
        /**
         *   Job提交 事件 我们主要分析这个handle
         */
        case JobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties) => dagScheduler
            .handleJobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties)
        
        case MapStageSubmitted(jobId, dependency, callSite, listener, properties) => dagScheduler
            .handleMapStageSubmitted(jobId, dependency, callSite, listener, properties)
        
        case StageCancelled(stageId, reason) => dagScheduler.handleStageCancellation(stageId, reason)
        
        case JobCancelled(jobId, reason) => dagScheduler.handleJobCancellation(jobId, reason)
        
        case JobGroupCancelled(groupId) => dagScheduler.handleJobGroupCancelled(groupId)
        
        case AllJobsCancelled => dagScheduler.doCancelAllJobs()
        
        case ExecutorAdded(execId, host) => dagScheduler.handleExecutorAdded(execId, host)
        
 
        case ExecutorLost(execId, reason) => val workerLost = reason match {
            case SlaveLost(_, true) => true
            case _ => false
        }
            dagScheduler.handleExecutorLost(execId, workerLost)
        
        
        case WorkerRemoved(workerId, host, message) => dagScheduler.handleWorkerRemoved(workerId, host, message)
        
    
        case BeginEvent(task, taskInfo) => dagScheduler.handleBeginEvent(task, taskInfo)

        case SpeculativeTaskSubmitted(task) => dagScheduler.handleSpeculativeTaskSubmitted(task)
        
    
        case GettingResultEvent(taskInfo) => dagScheduler.handleGetTaskResult(taskInfo)
        
        
        case completion: CompletionEvent => dagScheduler.handleTaskCompletion(completion)
        
      
        case TaskSetFailed(taskSet, reason, exception) => dagScheduler.handleTaskSetFailed(taskSet, reason, exception)
        
        case ResubmitFailedStages => dagScheduler.resubmitFailedStages()
    }

2.1.2:handleJobSubmitted 方法 (重点来了 这里就能看到Saprk的监控部分代码)

PS :因为这个方法的代码较长 并且都是一个切分stage的代码 跟本此讲述的事情无关 就先删除了

 /**
     *   1、stage切分
     *   2、stage提交
     */
    private[scheduler] def handleJobSubmitted(jobId: Int, finalRDD: RDD[_], func: (TaskContext, Iterator[_]) => _, partitions: Array[Int],
        callSite: CallSite, listener: JobListener, properties: Properties) {
        var finalStage: ResultStage = null
        try {
    
            // New stage creation may throw an exception if, for example, jobs are run on a
            // HadoopRDD whose underlying HDFS files have been deleted.
            finalStage = createResultStage(finalRDD, func, partitions, jobId, callSite)
           
            /**
             *   1、Application
             *   2、Job
             *   3、Stage
             *      一个Job有多个Stage,最后一个Stage叫做:ResultStage,前面的就叫做:ShuffleMapStage
             *          ShuffleMapStage 执行完了之后,数据可以被持久化或者shuffle给下一个stage
             *          ResultStage 执行完了之后,就按照程序的要求,把数据持久化,除非打印输出
             *   4、Task
             */
            
        } catch {
            case e: BarrierJobSlotsNumberCheckFailed => logWarning(
                s"The job $jobId requires to run a barrier stage that requires more slots " + "than the total number of slots in the cluster currently.")
                // If jobId doesn't exist in the map, Scala coverts its value null to 0: Int automatically.
                val numCheckFailures = barrierJobIdToNumTasksCheckFailures.compute(jobId, new BiFunction[Int, Int, Int] {
                    override def apply(key: Int, value: Int): Int = value + 1
                })
                if (numCheckFailures <= maxFailureNumTasksCheck) {
                    messageScheduler.schedule(new Runnable {
                        override def run(): Unit = eventProcessLoop
                            .post(JobSubmitted(jobId, finalRDD, func, partitions, callSite, listener, properties))
                    }, timeIntervalNumTasksCheck, TimeUnit.SECONDS)
                    return
                } else {
                    // Job failed, clear internal data.
                    barrierJobIdToNumTasksCheckFailures.remove(jobId)
                    listener.jobFailed(e)
                    return
                }
            case e: Exception => logWarning("Creating new stage failed due to exception - job: " + jobId, e)
                listener.jobFailed(e)
                return
        }
        
        // Job submitted, clear internal data.
        barrierJobIdToNumTasksCheckFailures.remove(jobId)
        
        val job = new ActiveJob(jobId, finalStage, callSite, listener, properties)
        
        
 ..............................略
       
	 // 这个代码我们点进去	
	 listenerBus.post(SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties))

        submitStage(finalStage)
    }

2.1.3: 进入到 以下的代码中 见名知意 我们可以大概的猜测到 是把 监控的信息 放入到一个队列档中

/** Post an event to all queues. */
    def post(event: SparkListenerEvent): Unit = {
        if (stopped.get()) {
            return
        }
        // 这里我们 果真看到了  metrics
        metrics.numEventsPosted.inc()
        
        // If the event buffer is null, it means the bus has been started and we can avoid
        // synchronization and post events directly to the queues. This should be the most
        // common case during the life of the bus.
        if (queuedEvents == null) {
            postToQueues(event)
            return
        }
        
        // Otherwise, need to synchronize to check whether the bus is started, to make sure the thread
        // calling start() picks up the new event.
        synchronized {
            if (!started.get()) {
                queuedEvents += event
                return
            }
        }
        
        // If the bus was already started when the check above was made, just post directly to the
        // queues.
        postToQueues(event)
    }

2.2 : 接下来 我们就要看看 是谁!在哪里调用了这个队列的东西

2.2.1: 阅读过Spark源码的小伙伴肯定知道 当我们写的代码 提交时 流程为 spark-submit脚本 提交 --》SparkSubmit 类中的main()方法 --》 然后调用 submit()–》 再调用 doRunMain() 方法 --》runMain() 方法

然后就会开始反射机制 创建除我们的类对象。调用main() 函数 那么到这里 就会开始 初始化我们的SparkContext对象

SparkContext 源码 因为这个类中会创建初始化许多Spark的组件 所以代码会很长 我们这里只分析 创建SaprkEnv环境的代码

private[spark] def createSparkEnv(conf: SparkConf, isLocal: Boolean, listenerBus: LiveListenerBus): SparkEnv = {
        
        /**
         *   创建 SparkEnv
         */
        SparkEnv.createDriverEnv(conf, isLocal, listenerBus, SparkContext.numDriverCores(master, conf))
    }
    

2.2.2: 我们跟进 就会到SparkEnv的

private def create(

conf: SparkConf, executorId: String, bindAddress: String, advertiseAddress: String, port: Option[Int], isLocal: Boolean,numUsableCores: Int, ioEncryptionKey: Option[Array[Byte]], listenerBus: LiveListenerBus = null,mockOutputCommitCoordinator: Option[OutputCommitCoordinator] = None): SparkEnv={****}方法中

同样 这个方法中会创建 初始化许多组件 比如netty 通信组件 shuffle管理组件 权限组件 序列化组件 Block块管理组件等。 但是我们只关心 metricsSystem 这个有关监控的类

val metricsSystem = if (isDriver) {
            // Don't start metrics system right now for Driver.
            // We need to wait for the task scheduler to give us an app ID.
            // Then we can start the metrics system.
            // 这里创建监控系统
            MetricsSystem.createMetricsSystem("driver", conf, securityManager)
        } else {
            // We need to set the executor ID before the MetricsSystem is created because sources and
            // sinks specified in the metrics configuration file will want to incorporate this executor's
            // ID into the metrics they report.
            conf.set("spark.executor.id", executorId)
            // 这里创建监控系统
            val ms = MetricsSystem.createMetricsSystem("executor", conf, securityManager)
            ms.start()
            ms
        }

点击进入到creattMetricsSystem 最后会走到 MetricsConfig.initialize() 方法中

def initialize() {
    // Add default properties in case there's no properties file
    setDefaultProperties(properties)

    loadPropertiesFromFile(conf.getOption("spark.metrics.conf"))

    // Also look for the properties in provided Spark configuration
   // 这里我们能知道 这就是Spark 进行配置的参数 
   // 我们可以通过官网查看 Spark给我们 提供了默认实现有
   // ConsoleSink
   // CSVSink
   // MetricsServlet 等  
    val prefix = "spark.metrics.conf."
    conf.getAll.foreach {
      case (k, v) if k.startsWith(prefix) =>
        properties.setProperty(k.substring(prefix.length()), v)
      case _ =>
    }

    // Now, let's populate a list of sub-properties per instance, instance being the prefix that
    // appears before the first dot in the property name.
    // Add to the sub-properties per instance, the default properties (those with prefix "*"), if
    // they don't have that exact same sub-property already defined.
    //
    // For example, if properties has ("*.class"->"default_class", "*.path"->"default_path,
    // "driver.path"->"driver_path"), for driver specific sub-properties, we'd like the output to be
    // ("driver"->Map("path"->"driver_path", "class"->"default_class")
    // Note how class got added to based on the default property, but path remained the same
    // since "driver.path" already existed and took precedence over "*.path"
    //
    perInstanceSubProperties = subProperties(properties, INSTANCE_REGEX)
    if (perInstanceSubProperties.contains(DEFAULT_PREFIX)) {
      val defaultSubProperties = perInstanceSubProperties(DEFAULT_PREFIX).asScala
      for ((instance, prop) <- perInstanceSubProperties if (instance != DEFAULT_PREFIX);
           (k, v) <- defaultSubProperties if (prop.get(k) == null)) {
        prop.put(k, v)
      }
    }
  }

现在我们查看 ConsoleSink

private[spark] class ConsoleSink(val property: Properties, val registry: MetricRegistry,
    securityMgr: SecurityManager) extends Sink {
  val CONSOLE_DEFAULT_PERIOD = 10
  val CONSOLE_DEFAULT_UNIT = "SECONDS"

  val CONSOLE_KEY_PERIOD = "period"
  val CONSOLE_KEY_UNIT = "unit"

  val pollPeriod = Option(property.getProperty(CONSOLE_KEY_PERIOD)) match {
    case Some(s) => s.toInt
    case None => CONSOLE_DEFAULT_PERIOD
  }

  val pollUnit: TimeUnit = Option(property.getProperty(CONSOLE_KEY_UNIT)) match {
    case Some(s) => TimeUnit.valueOf(s.toUpperCase(Locale.ROOT))
    case None => TimeUnit.valueOf(CONSOLE_DEFAULT_UNIT)
  }

  MetricsSystem.checkMinimalPollingPeriod(pollUnit, pollPeriod)

  val reporter: ConsoleReporter = ConsoleReporter.forRegistry(registry)
      .convertDurationsTo(TimeUnit.MILLISECONDS)
      .convertRatesTo(TimeUnit.SECONDS)
      .build()

  override def start() {
    reporter.start(pollPeriod, pollUnit)
  }

  override def stop() {
    reporter.stop()
  }

  override def report() {
    reporter.report()
  }
}

3: 我们现在就可以通过这例子 然后实现写入Kafka 然后 加上 StructStreaming+普罗米修斯时序数据库 来完成Spark 计算任务的监控

3.1:再相同的目录下 新建kafkaSink 实现特质Sink


private[spark] trait Sink {
  def start(): Unit
  def stop(): Unit
  def report(): Unit
}

3.2 ConsoleSink的代码 我们可以看出 start()方法 是在注册进入监控系统的时候 做一些初始化的操作 report()方法才是真正的输出监控的操作 stop()为关闭的一些操作.

3.3 具体实现的代码

路径为:org.apache.spark.metrics.sink

private[spark] class KafkaSink(val props: Properties, val registry: MetricRegistry,
                               securityMgr: SecurityManager) extends Sink with Logging{
	// 信息的输出 周期
    val KAFKA_KEY_PERIOD = "period"
    // 这个根据自己的业务调整 这里就比较不优雅了 应当设置为可配置的
    // 默认事件
    val KAFKA_DEFAULT_PERIOD = 3

    val KAFKA_KEY_UNIT = "unit"
    val KAFKA_DEFAULT_UNIT = "SECONDS"

    val KAFKA_TOPIC = "metrics"
    val KAFKA_DEFAULT_TOPIC = "kafka-sink-topic"

    val KAFAK_BROKERS = "kafka-brokers"
    val KAFAK_DEFAULT_BROKERS = "XXX:9092"

	// 初始化我们输出的Kafka Topic
    val TOPIC = Option(property.getProperty(KAFKA_TOPIC)).getOrElse(KAFKA_DEFAULT_TOPIC)
    val BROKERS = Option(property.getProperty(KAFAK_BROKERS)).getOrElse(throw new IllegalStateException("请配置Kafka集群地址!"))

    private val kafkaProducerConfig = new Properties()
    kafkaProducerConfig.put("bootstrap.servers",BROKERS)
    kafkaProducerConfig.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer")
    kafkaProducerConfig.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer")

    private val producer = new KafkaProducer[String, String](kafkaProducerConfig)

	// 保证功能和 业务的分离 我们讲 具体的输出监控信息的逻辑分离到 另外一个
	// 类当中
    private val reporter: MyKafkaReporter = MyKafkaReporter.forRegistry(registry)
        .topic(TOPIC)
        .build(producer)


    val pollPeriod = Option(property.getProperty(KAFKA_KEY_PERIOD)) match {
        case Some(s) => s.toInt
        case None => KAFKA_DEFAULT_PERIOD
    }

    val pollUnit: TimeUnit = Option(property.getProperty(KAFKA_KEY_UNIT)) match {
        case Some(s) => TimeUnit.valueOf(s.toUpperCase(Locale.ROOT))
        case None => TimeUnit.valueOf(KAFKA_DEFAULT_UNIT)
    }

    override def start(): Unit = {
        log.info("开始监控信息输出到Kafka业务代码........")
        reporter.start(pollPeriod, pollUnit)
    }

    override def stop(): Unit = {
        log.info("停止监控信息输出到Kafka业务代码........")
        reporter.stop()
        producer.close()
    }

    override def report(): Unit = {
        log.info("开始信息的输出..........")
        reporter.report()
    }
}

因为具体的信息涉密 所以 这里借鉴了 网络上的代码 就不做具体的注释了 大家可以仔细看看。

public class KafkaReporter  extends ScheduledReporter  {

    private static final Logger LOGGER = LoggerFactory.getLogger(KafkaReporter.class);

    public static KafkaReporter.Builder forRegistry(MetricRegistry registry) {
        return new KafkaReporter.Builder(registry);
    }

    private KafkaProducer producer;
    private Clock clock;
    private String topic;

    private KafkaReporter(MetricRegistry registry,
                        TimeUnit rateUnit,
                        TimeUnit durationUnit,
                        MetricFilter filter,
                        Clock clock,
                        String topic,
                        KafkaProducer producer) {
        super(registry, "kafka-reporter", filter, rateUnit, durationUnit);
        this.producer = producer;
        this.topic = topic;
        this.clock = clock;
    }

    @Override
    public void report(SortedMap<String, Gauge> gauges, SortedMap<String, Counter> counters, SortedMap<String, Histogram> histograms, SortedMap<String, Meter> meters, SortedMap<String, Timer> timers) {
        final long timestamp = TimeUnit.MILLISECONDS.toSeconds(clock.getTime());

        // Gauge
        for (Map.Entry<String, Gauge> entry : gauges.entrySet()) {
            reportGauge(timestamp,entry.getKey(), entry.getValue());
        }
        // Histogram
//        for (Map.Entry<String, Histogram> entry : histograms.entrySet()) {
//            reportHistogram(timestamp, entry.getKey(), entry.getValue());
//        }
    }


    private void reportGauge(long timestamp, String name, Gauge gauge) {
        report(timestamp, name, gauge.getValue());
    }

    private void reportHistogram(long timestamp, String name, Histogram histogram) {
        final Snapshot snapshot = histogram.getSnapshot();
        report(timestamp, name, snapshot.getMax());
    }

    private void report(long timestamp, String name,  Object values) {
        JSONObject jsonObject = new JSONObject();
        jsonObject.put("name",name);
        jsonObject.put("timestamp",timestamp);
        jsonObject.put("value",values);
        producer.send(new ProducerRecord(topic,name, jsonObject.toJSONString()));
    }


    public static class Builder {

        private final MetricRegistry registry;
        private TimeUnit rateUnit;
        private TimeUnit durationUnit;
        private MetricFilter filter;
        private Clock clock;
        private String topic;

        private Builder(MetricRegistry registry) {
            this.registry = registry;
            this.rateUnit = TimeUnit.SECONDS;
            this.durationUnit = TimeUnit.MILLISECONDS;
            this.filter = MetricFilter.ALL;
            this.clock = Clock.defaultClock();
        }

        /**
         * Convert rates to the given time unit.
         *
         * @param rateUnit a unit of time
         * @return {@code this}
         */
        public KafkaReporter.Builder convertRatesTo(TimeUnit rateUnit) {
            this.rateUnit = rateUnit;
            return this;
        }

        /**
         * Convert durations to the given time unit.
         *
         * @param durationUnit a unit of time
         * @return {@code this}
         */
        public KafkaReporter.Builder convertDurationsTo(TimeUnit durationUnit) {
            this.durationUnit = durationUnit;
            return this;
        }

        /**
         * Use the given {@link Clock} instance for the time.
         *
         * @param clock a {@link Clock} instance
         * @return {@code this}
         */
        public Builder withClock(Clock clock) {
            this.clock = clock;
            return this;
        }

        /**
         * Only report metrics which match the given filter.
         *
         * @param filter a {@link MetricFilter}
         * @return {@code this}
         */
        public KafkaReporter.Builder filter(MetricFilter filter) {
            this.filter = filter;
            return this;
        }

        /**
         * Only report metrics which match the given filter.
         *
         * @param topic a
         * @return {@code this}
         */
        public KafkaReporter.Builder topic(String topic) {
            this.topic = topic;
            return this;
        }

        /**
         * Builds a {@link KafkaReporter} with the given properties, writing {@code .csv} files to the
         * given directory.
         *
         * @return a {@link KafkaReporter}
         */
        public KafkaReporter build(KafkaProducer producer) {
            return new KafkaReporter(registry,
                    rateUnit,
                    durationUnit,
                    filter,
                    clock,
                    topic,
                    producer);
        	}
    	}
    }

最后我们开始使用 我们的自定义的监控输出 在我们的conf/ 路径下的metrics.properties文件 添加配置 Spark 启动的时候就会自动的加载它

spark.metrics.conf.*.sink.kafka.class=org.apache.spark.metrics.sink.MyKafkaSink
spark.metrics.conf.*.sink.kafka.kafka-brokers=IP:9092
  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2021-09-06 11:13:37  更:2021-09-06 11:15:11 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/18 17:09:00-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码