IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> MySql的事务 -> 正文阅读

[大数据]MySql的事务

MySql事务

在这里插入图片描述

事务的四大特性(ACID)

在这里插入图片描述

  1. 原子性(Atomicity): 事务是最小的执行单位,不允许分割。事务的原子性确保动作要么全部完成,要么完全不起作用;
  2. 一致性(Consistency): 执行事务后,数据库从一个正确的状态变化到另一个正确的状态;
  3. 隔离性(Isolation): 并发访问数据库时,一个用户的事务不被其他事务所干扰,各并发事务之间数据库是独立的;
  4. 持久性(Durability): 一个事务被提交之后。它对数据库中数据的改变是持久的,即使数据库发生故障也不应该对其有任何影响。

(AID -> C)

AID都是为了保持C,C可以理解为事务前后的逻辑一致性,比如转账要保证事务前后账户总和一样

事务最经典也经常被拿出来说例子就是转账了。假如小明要给小红转账1000元,这个转账会涉及到两个关键操作就是:将小明的余额减少1000元,将小红的余额增加1000元。万一在这两个操作之间突然出现错误比如银行系统崩溃,导致小明余额减少而小红的余额没有增加,这样就不对了。事务就是保证这两个关键操作要么都成功,要么都要失败。

事务四特性的实现

A-原子性:undo log

事务是数据库的逻辑工作单位,而且是必须是原子工作单位,对于其数据修改,要么全部执行,要么全部失败回滚。

保存了事务发生之前的数据的一个版本,可以用于回滚,同时可以提供多版本并发控制下的读(MVCC)

D-持久性:Redo log的主要作用是用于数据库的崩溃恢复

指一个事务一旦提交,它对数据库中的数据的改变就应该是永久性的,即使此时再执行回滚操作也不能撤消所做的更改。

持久性就是用redo log,不是每次都写入磁盘,而是定期通过redo log把数据刷入磁盘这样即便断电后,重启mysql还是可以恢复

I-隔离性

并发事务带来的问题

在典型的应用程序中,多个事务并发运行,经常会操作相同的数据来完成各自的任务(多个用户对同一数据进行操作)。并发虽然是必须的,但可能会导致以下的问题。

  • 脏读(Dirty read): 当一个事务正在访问数据并且对数据进行了修改,而这种修改还没有提交到数据库中,这时另外一个事务也访问了这个数据,然后使用了这个数据。因为这个数据是还没有提交的数据,那么另外一个事务读到的这个数据是“脏数据”,依据“脏数据”所做的操作可能是不正确的。
  • 不可重复读(Unrepeatableread): 指在一个事务内多次读同一数据。在这个事务还没有结束时,另一个事务也访问该数据。那么,在第一个事务中的两次读数据之间,由于第二个事务的修改导致第一个事务两次读取的数据可能不太一样。这就发生了在一个事务内两次读到的数据是不一样的情况,因此称为不可重复读。
  • 幻读(Phantom read): 幻读与不可重复读类似。它发生在一个事务(T1)读取了几行数据,接着另一个并发事务(T2)插入了一些数据时。在随后的查询中,第一个事务(T1)就会发现多了一些原本不存在的记录,就好像发生了幻觉一样,所以称为幻读。
  • 丢失修改(Lost to modify): 指在一个事务读取一个数据时,另外一个事务也访问了该数据,那么在第一个事务中修改了这个数据后,第二个事务也修改了这个数据。这样第一个事务内的修改结果就被丢失,因此称为丢失修改。 例如:事务1读取某表中的数据A=20,事务2也读取A=20,事务1修改A=A-1,事务2也修改A=A-1,最终结果A=19,事务1的修改被丢失

丢失修改 通常是业务逻辑层的问题,业务逻辑层设计合理的情况下,四种隔离级别都可以避免丢失修改的问题。

事务隔离级别

SQL 标准定义了四个隔离级别:

  • READ-UNCOMMITTED(读取未提交): 最低的隔离级别,允许读取尚未提交的数据变更,可能会导致脏读、幻读或不可重复读
  • READ-COMMITTED(读取已提交): 允许读取并发事务已经提交的数据,可以阻止脏读,但是幻读或不可重复读仍有可能发生
  • REPEATABLE-READ(可重复读): 对同一字段的多次读取结果都是一致的,除非数据是被本身事务自己所修改,可以阻止脏读和不可重复读,但幻读仍有可能发生
  • SERIALIZABLE(可串行化): 最高的隔离级别,完全服从ACID的隔离级别。所有的事务依次逐个执行,这样事务之间就完全不可能产生干扰,也就是说,该级别可以防止脏读、不可重复读以及幻读

隔离级别脏读不可重复读幻读
READ-UNCOMMITTED
READ-COMMITTED×
REPEATABLE-READ××
SERIALIZABLE×××

MySQL InnoDB 存储引擎的默认支持的隔离级别是 REPEATABLE-READ(可重读)

隔离级别原理探究

MVCC 与 快照读

MySQL为了减少锁处理(包括等待其它锁)的时间,提升并发能力,引入了快照读的概念,使得select不用加锁(MVVC)。

快照读不会出现 脏读(读不到非提交数据)、不可重复读(MVVC)、幻读(MVVC).

详细

:读取的是记录数据的可见版本(可能是过期的数据),不用加锁(MVVC)

快照读 :

为了解决不可重复读,或者为了实现可重复读,MySQL 采用了 MVVC (多版本并发控制) 的方式。

我们在数据库表中看到的一行记录可能实际上有多个版本,每个版本的记录除了有数据本身外,还要有一个表示版本的字段,记为 row trx_id,而这个字段就是使其产生的事务的 id,事务 ID 记为 transaction id,它在事务开始的时候向事务系统申请,按时间先后顺序递增。

在这里插入图片描述

按照上面这张图理解,一行记录现在有 3 个版本,每一个版本都记录着使其产生的事务 ID,比如事务A的transaction id 是100,那么版本1的row trx_id 就是 100,同理版本2和版本3。

在上面介绍读提交和可重复读的时候都提到了一个词,叫做快照,学名叫做一致性视图,这也是可重复读和不可重复读的关键,可重复读是在事务开始的时候生成一个当前事务全局性的快照,而读提交则是每次执行语句的时候都重新生成一次快照。

对于一个快照来说,它能够读到那些版本数据,要遵循以下规则:

  1. 当前事务内的更新,可以读到;
  2. 版本未提交,不能读到;
  3. 版本已提交,但是却在快照创建后提交的,不能读到;
  4. 版本已提交,且是在快照创建前提交的,可以读到;

利用上面的规则,再返回去套用到读提交和可重复读的那两张图上就很清晰了。还是要强调,两者主要的区别就是在快照的创建上,可重复读仅在事务开始是创建一次,而读提交每次执行语句的时候都要重新创建一次。

加行锁 : 加锁的过程要分有索引和无索引两种情况

有索引的情况,那么 MySQL 直接就在索引数中找到了这行数据,然后干净利落的加上行锁就可以了。

无索引的情况下,MySQL 无法直接定位到这行数据。那怎么办呢,当然也不是加表锁了。MySQL 会为这张表中所有行加行锁,没错,是所有行。但是呢,在加上行锁后,MySQL 会进行一遍过滤,发现不满足的行就释放锁,最终只留下符合条件的行。虽然最终只为符合条件的行加了锁,但是这一锁一释放的过程对性能也是影响极大的。所以,如果是大表的话,建议合理设计索引,如果真的出现这种情况,那很难保证并发度。

四种隔离级别 与 当前读

三种读问题主要都是针对当前读提出的,首先通过MVVC机制已经不会出现脏读(不提交不会对数据修改),不可重复读通过 行锁 解决,幻读通过 间隙锁、Next-Key锁 解决。

当前读涉及的语句

select *** lock in share mode(共享锁)
select *** for update (排他锁)
update
delete
insert

四种隔离级别

读未提交-READ-UNCOMMITTED,它是性能最好,也可以说它是最野蛮的方式,因为它压根儿就不加锁,所以根本谈不上什么隔离效果,可以理解为没有隔离。

(RC)读已提交-READ-COMMITTED(MVCC多版本并发控制): 每次执行语句时创建一个快照(解决脏读)。

(RR)可重复读(MVCC多版本并发控制): 每次执行开启事务时创建一个快照(解决不可重复读)。

串行化-SERIALIZABLE。读的时候加共享锁,也就是其他事务可以并发读,但是不能写。写的时候加排它锁,其他事务不能并发写也不能并发读。

总结

快照 : 只能读到当前事务内的更新 以及 本快照创建前提交的版本的数据。

并发写 : 写之前版本号+1,加行锁,当前读-只有版本号大于当前版本号才会跟新成功,否则视为过去数据。

解决幻读 :MySQL 已经在可重复读隔离级别下解决了幻读的问题,MySQL 把行锁和间隙锁合并在一起,解决了并发写和幻读的问题,这个锁叫做 Next-Key锁。

快照读的幻读-mvcc 解决
当前读的幻读-gap 锁解决

在这里插入图片描述

在这里插入图片描述

在事务A提交之前,事务B的插入操作只能等待,这就是间隙锁起得作用。当事务A执行update user set name='风筝2号’ where age = 10; 的时候,由于条件 where age = 10 ,数据库不仅在 age =10 的行上添加了行锁,而且在这条记录的两边,也就是(负无穷,10]、(10,30]这两个区间加了间隙锁,从而导致事务B插入操作无法完成,只能等待事务A提交。不仅插入 age = 10 的记录需要等待事务A提交,age<10、10<age<30 的记录页无法完成,而大于等于30的记录则不受影响,这足以解决幻读问题了。

这是有索引的情况,如果 age 不是索引列,那么数据库会为整个表加上间隙锁。所以,如果是没有索引的话,不管 age 是否大于等于30,都要等待事务A提交才可以成功插入。

MySQl两阶段提交

prepare : 1 写redolog、undolog 到缓冲区,

? 2 修改缓冲页的内容,异步刷盘

commit:1 redolog、undolog落盘

? 2 更新数据记录,缓存操作并异步刷盘

? 3 将事务日志持久化到 binlog

? 4 提交事务,在 redo log 中写入commit记录

保证主从数据的一致性:

只要 binlog 没写成功,整个事务是需要回滚的,而 binlog 写成功后即使 MySQL Crash 了都可以恢复事务并完成提交。

所以 binlog 的写入过程不得不嵌入到纯粹的事务存储引擎执行过程中,并以内部分布式事务(xa 事务)的方式完成两阶段提交。

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2021-09-08 10:48:29  更:2021-09-08 10:48:43 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/18 14:40:56-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码