| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 大数据 -> Spark 系列教程(1)Word Count -> 正文阅读 |
|
[大数据]Spark 系列教程(1)Word Count |
基本概要Spark 是一种快速、通用、可扩展的大数据分析引擎,是基于内存计算的大数据并行计算框架。Spark 在 2009 年诞生于加州大学伯克利分校 AMP 实验室,2010 年开源,2014 年 2月成为 Apache 顶级项目。 本文是 Spark 系列教程的第一篇,通过大数据中的 “Hello World” – Word Count 实验带领大家快速上手 Spark。Word Count 顾名思义就是对单词进行计数,我们首先会对文件中的单词做统计计数,然后输出出现次数最多的 3 个单词。 前提条件本文中会使用 spark-shell 来演示 Word Count 示例的执行过程。spark-shell 是提交 Spark 作业众多方式中的一种,提供了交互式运行环境(REPL,Read-Evaluate-Print-Loop),在 spark-shell 上输入代码后就可以立即得到响应。spark-shell 在运行的时候,依赖于 Java 和 Scala 语言环境。因此,为了保证 spark-shell 的成功启动,需要在本地预装 Java 与 Scala。 本地安装 Spark下载并解压安装包从 Spark 官网 下载安装包,选择最新的预编译版本即可,然后将安装包解压到本地电脑的任意目录。 设置环境变量为了在本地电脑的任意目录下都可以直接运行 Spark 相关的命令,我们需要设置一下环境变量。我本地的 Mac 电脑使用的是 zsh 作为终端 shell,编辑 ~/.zshrc 文件设置环境变量,如果是 bash 可以编辑 /etc/profile 文件。
加载环境变量:
在终端输入
Spark 基本概念在开始实验之前,先介绍 3 个 Spark 中的概念,分别是 spark、sparkContext 和 RDD。
实现 Word CountWord Count 的整体执行过程示意图如下,接下来按照读取内容、分词、分组计数、排序、取 Top3 出现次数的单词这 5 个步骤对文件中的单词进行处理。 准备文件/Users/chengzhiwei/tmp/wordcount.txt 文件中写入以下内容:
第 1 步:读取文件首先,我们调用 SparkContext 的 textFile 方法,读取源文件,生成 RDD[String] 类型的 RDD,文件中的每一行是数组中的一个元素。
第 2 步:分词“分词”就是把“数组”的行元素打散为单词。要实现这一点,我们可以调用 RDD 的 flatMap 方法来完成。flatMap 操作在逻辑上可以分成两个步骤:映射和展平。
首先使用空格作为分隔符,将 lineRDD 中的行元素转换为单词,分割之后,每个行元素就都变成了单词数组,元素类型也从 String 变成了 Array[String],像这样以元素为单位进行转换的操作,统一称作“映射”。 映射过后,RDD 类型由原来的 RDD[String]变为 RDD[Array[String]]。如果把 RDD[String]看成是“数组”的话,那么 RDD[Array[String]]就是一个“二维数组”,它的每一个元素都是单词。接下来我们需要对这个“二维数组”做展平,也就是去掉内层的嵌套结构,把“二维数组”还原成“一维数组”。 第 3 步:分组计数在 RDD 的开发框架下,聚合类操作,如计数、求和、求均值,需要依赖键值对(key value pair)类型的数据元素。因此,在调用聚合算子做分组计数之前,我们要先把 RDD 元素转换为(key,value)的形式,也就是把 RDD[String] 映射成 RDD[(String, Int)]。 使用 map 方法将 word 映射成 (word,1) 的形式,所有的 value 的值都设置为 1,对于同一个的单词,在后续的计数运算中,我们只要对 value 做累加即可。
完成了形式的转换之后,我们就该正式做分组计数了。分组计数其实是两个步骤,也就是先“分组”,再“计数”。我们使用聚合算子 reduceByKey 来同时完成分组和计数这两个操作。对于 kvRDD 这个键值对“数组”,reduceByKey 先是按照 Key(也就是单词)来做分组,分组之后,每个单词都有一个与之对应的 value 列表。然后根据用户提供的聚合函数,对同一个 key 的所有 value 做 reduce 运算,这里就是对 value 进行累加。
第 4 步:排序现在得到的 wordCounts RDD 中 key 是单词,value 是这个单词出现的次数,我们最终要取 Top3 出现次数的单词,首先要根据单词出现的次数进行逆序排序。 先交换 wordCounts RDD 中的 key 和 value 中的位置,方便下一步排序。
根据单词出现的次数逆序排序,false 表示逆序排序。
第 5 步:取 Top3 出现次数的单词使用 take 方法获取排序后数组中前 3 个元素。
完整代码将以下代码在 spark-shell 中执行:
输出结果如下,可以看到 Top3 出现次数的单词分别是 Spark,Hadoop,Hive。到此为止,我们成功实现了 Word Count 的功能。
简化写法上面实现 Word Count 的代码看起来稍稍有些复杂,我们可以使用链式调用的写法将上面的代码简化成一行代码,通过
Scala 语言为了让函数字面量更加精简,还可以使用下划线
欢迎关注 |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 | -2025/1/18 11:46:00- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |