IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> redis之radix tree -> 正文阅读

[大数据]redis之radix tree

一、简介

redis在4.0版本中引入了新的数据结构raix tree, 为了修复集群慢的问题。
“A new data structure, the radix tree (rax.c) was introduced into Redis in order to fix a major Redis Cluster slowdown. (Salvatore Sanfilippo)”

二、结构

代码4.0.0

typedef struct raxNode {
    uint32_t iskey:1;     /* Does this node contain a key? */
    uint32_t isnull:1;    /* Associated value is NULL (don't store it). */
    uint32_t iscompr:1;   /* Node is compressed. */
    uint32_t size:29;     /* Number of children, or compressed string len. */
    unsigned char data[];
} raxNode;

typedef struct rax {
    raxNode *head;
    uint64_t numele; //元素的个数
    uint64_t numnodes;//节点个数
} rax;

请添加图片描述
data部分的结构根据iscompr字段值进行区分

  • 非压缩结构时的data结构
    每一个字符都对应一个子节点
    请添加图片描述

  • 压缩结构
    data中的数据属于一个key中的连续数据,并且只有一个子节点。
    请添加图片描述

  • 可选的数据部分
    请添加图片描述

三、代码实现

插入

3.1 插入位置在压缩节点时

插入的位置在一个压缩节点位置时,需要对压缩节点进行拆分。
拆分压缩节点分了5种场景
原始数据“ANNIBALE”如下:
请添加图片描述
场景1
插入“ANNIENTARE”
从中间拆分,拆分成两段
请添加图片描述
场景2
插入“ANNIBALI”
最后一个字符拆分,即只能拆分一个段,没有后段
请添加图片描述
场景3
插入“AGO”
和场景1相似,只是iscompr=0, 变为非压缩节点
请添加图片描述
场景4
插入“CIAO”
拆分成一段,没有前段
请添加图片描述
场景5
插入“ANNI”
前缀完全相同
请添加图片描述

3.2 插入非压缩节点时

创建节点,插入。

3.3 创建一个新的radix

rax *raxNew(void) {
    rax *rax = rax_malloc(sizeof(*rax));
    if (rax == NULL) return NULL;
    rax->numele = 0;
    rax->numnodes = 1;
    rax->head = raxNewNode(0,0);
    if (rax->head == NULL) {
        rax_free(rax);
        return NULL;
    } else {
        return rax;
    }
}
raxNode *raxNewNode(size_t children, int datafield) {
    size_t nodesize = sizeof(raxNode)+children+
                      sizeof(raxNode*)*children;
    if (datafield) nodesize += sizeof(void*);
    raxNode *node = rax_malloc(nodesize);
    if (node == NULL) return NULL;
    node->iskey = 0;
    node->isnull = 0;
    node->iscompr = 0;
    node->size = children;
    return node;
}

请添加图片描述

3.4 插入或者更新

  • 当插入的元素已经存在,则直接更新data,并返回0
  • 否则插入成功,返回1
  • oom时也返回0,同时设置errno = ENOMEM

3.4.1 插入“ANNIBALE”

//插入有value
char *value = malloc(30);
strcpy(value, "hello world!");
raxInsert(rax, "ANNIBALE", 8, value, NULL) ;

3.4.1.1 首先查询到插入位置

i = raxLowWalk(rax,s,len,&h,&parentlink,&j,NULL);
static inline size_t raxLowWalk(rax *rax, unsigned char *s, size_t len, raxNode **stopnode, raxNode ***plink, int *splitpos, raxStack *ts) {
    raxNode *h = rax->head;
    raxNode **parentlink = &rax->head;

    size_t i = 0; /* Position in the string. */
    size_t j = 0; /* Position in the node children (or bytes if compressed).*/
    while(h->size && i < len) {
        debugnode("Lookup current node",h);
        unsigned char *v = h->data;

        if (h->iscompr) {
            for (j = 0; j < h->size && i < len; j++, i++) {
                if (v[j] != s[i]) break;
            }
            if (j != h->size) break;
        } else {
            /* Even when h->size is large, linear scan provides good
             * performances compared to other approaches that are in theory
             * more sounding, like performing a binary search. */
            for (j = 0; j < h->size; j++) {
                if (v[j] == s[i]) break;
            }
            if (j == h->size) break;
            i++;
        }

        if (ts) raxStackPush(ts,h); /* Save stack of parent nodes. */
        raxNode **children = raxNodeFirstChildPtr(h);
        if (h->iscompr) j = 0; /* Compressed node only child is at index 0. */
        memcpy(&h,children+j,sizeof(h));
        parentlink = children+j;
        j = 0; /* If the new node is compressed and we do not
                  iterate again (since i == l) set the split
                  position to 0 to signal this node represents
                  the searched key. */
    }
    if (stopnode) *stopnode = h;
    if (plink) *plink = parentlink;
    if (splitpos && h->iscompr) *splitpos = j;
    return i;
}

请添加图片描述

3.4.1.2 插入节点为非压缩节点

前面的逻辑都不满足,直接进入插入逻辑

   while(i < len) {
        raxNode *child;

        /* If this node is going to have a single child, and there
         * are other characters, so that that would result in a chain
         * of single-childed nodes, turn it into a compressed node. */
        if (h->size == 0 && len-i > 1) {
            debugf("Inserting compressed node\n");
            size_t comprsize = len-i;
            if (comprsize > RAX_NODE_MAX_SIZE)
                comprsize = RAX_NODE_MAX_SIZE;
            raxNode *newh = raxCompressNode(h,s+i,comprsize,&child);
            if (newh == NULL) goto oom;
            h = newh;
            memcpy(parentlink,&h,sizeof(h));
            parentlink = raxNodeLastChildPtr(h);
            i += comprsize;
        } else {
            debugf("Inserting normal node\n");
            raxNode **new_parentlink;
            raxNode *newh = raxAddChild(h,s[i],&child,&new_parentlink);
            if (newh == NULL) goto oom;
            h = newh;
            memcpy(parentlink,&h,sizeof(h));
            parentlink = new_parentlink;
            i++;
        }
        rax->numnodes++;
        h = child;
    }
  • 本例子中满足if (h->size == 0 && len-i > 1),所以插入一个压缩节点
//raxCompressNode(h, "ANNIBALE", 8, &child)
raxNode *raxCompressNode(raxNode *n, unsigned char *s, size_t len, raxNode **child) {
    assert(n->size == 0 && n->iscompr == 0);
    void *data = NULL; /* Initialized only to avoid warnings. */
    size_t newsize;

    debugf("Compress node: %.*s\n", (int)len,s);

    /* Allocate the child to link to this node. */
    *child = raxNewNode(0,0);
    if (*child == NULL) return NULL;

    /* Make space in the parent node. */
    newsize = sizeof(raxNode)+len+sizeof(raxNode*);
    if (n->iskey) {
        data = raxGetData(n); /* To restore it later. */
        if (!n->isnull) newsize += sizeof(void*);
    }
    raxNode *newn = rax_realloc(n,newsize);
    if (newn == NULL) {
        rax_free(*child);
        return NULL;
    }
    n = newn;

    n->iscompr = 1;
    n->size = len;
    memcpy(n->data,s,len);
    if (n->iskey) raxSetData(n,data);
    raxNode **childfield = raxNodeLastChildPtr(n);
    memcpy(childfield,child,sizeof(*child));
    return n;
}
3.4.1.2.1 创建子节点

请添加图片描述

 /* Allocate the child to link to this node. */
    *child = raxNewNode(0,0);
    if (*child == NULL) return NULL;
3.4.1.2.2 扩容父节点

请添加图片描述

 /* Make space in the parent node. */
    newsize = sizeof(raxNode)+len+sizeof(raxNode*);
    if (n->iskey) {
        data = raxGetData(n); /* To restore it later. */
        if (!n->isnull) newsize += sizeof(void*);
    }
    raxNode *newn = rax_realloc(n,newsize);
    if (newn == NULL) {
        rax_free(*child);
        return NULL;
    }
    n = newn;
3.4.1.2.3 设置父节点信息

请添加图片描述

   n->iscompr = 1;
   n->size = len;
   memcpy(n->data,s,len);
3.4.1.2.4 重新设置原有的value
//本例子中此节点不是一个key
  if (n->iskey) raxSetData(n,data);
3.4.1.2.5 关联父子节点

请添加图片描述

raxNode **childfield = raxNodeLastChildPtr(n);
memcpy(childfield,child,sizeof(*child)); 
3.4.1.2.6 重置子节点

因为h扩容了,可能地址已经改变,所以需要重新赋值
请添加图片描述

 	raxNode *newh = raxCompressNode(h,s+i,comprsize,&child);
	if (newh == NULL) goto oom;
	h = newh;
	memcpy(parentlink,&h,sizeof(h));
3.4.1.2.7 移动下一个节点

请添加图片描述

parentlink = raxNodeLastChildPtr(h);
i += comprsize;
3.4.1.2.8 节点个数增加

请添加图片描述

rax->numnodes++;
h = child;
3.4.1.2.9 分配数据空间

如果data为null,则不会分配空间
请添加图片描述

raxNode *newh = raxReallocForData(h,data);
if (newh == NULL) goto oom;
/* realloc the node to make room for auxiliary data in order
 * to store an item in that node. On out of memory NULL is returned. */
raxNode *raxReallocForData(raxNode *n, void *data) {
    if (data == NULL) return n; /* No reallocation needed, setting isnull=1 */
    size_t curlen = raxNodeCurrentLength(n);
    return rax_realloc(n,curlen+sizeof(void*));
}
3.4.1.2.10 增加key节点个数

请添加图片描述

h = newh;
if (!h->iskey) rax->numele++;
3.4.1.2.11 设置value

当有data时,isnull是1, 否则isnull为0,value字段只是存放的真正值的地址
请添加图片描述

raxSetData(h,data);
/* Set the node auxiliary data to the specified pointer. */
void raxSetData(raxNode *n, void *data) {
    n->iskey = 1;
    if (data != NULL) {
        void **ndata = (void**)
            ((char*)n+raxNodeCurrentLength(n)-sizeof(void*));
        memcpy(ndata,&data,sizeof(data));
        n->isnull = 0;
    } else {
        n->isnull = 1;
    }
}
3.4.1.2.12 重置子节点

因为在h设置value扩容,地址可能修改
请添加图片描述

memcpy(parentlink,&h,sizeof(h));
return 1; /* Element inserted. */

3.4.2 插入"ANNIENTARE"

raxInsert(rax, "ANNIENTARE", 10, NULL, NULL) ;

3.4.2.1 定位插入位置

请添加图片描述

3.4.2.2 插入节点为压缩节点

  • 确定算法
    当前例子满足算法1
/* ------------------------- ALGORITHM 1 --------------------------- */
 if (h->iscompr && i != len) {
3.4.2.2.1 保存next指针
 /* 1: Save next pointer. */
raxNode **childfield = raxNodeLastChildPtr(h);
raxNode *next;
memcpy(&next,childfield,sizeof(next));
...

请添加图片描述

3.4.2.2.2 创建拆分节点
/* Set the length of the additional nodes we will need. */
size_t trimmedlen = j;
size_t postfixlen = h->size - j - 1;
int split_node_is_key = !trimmedlen && h->iskey && !h->isnull;
size_t nodesize;

/* 2: Create the split node. Also allocate the other nodes we'll need
 *    ASAP, so that it will be simpler to handle OOM. */
raxNode *splitnode = raxNewNode(1, split_node_is_key);
raxNode *trimmed = NULL;
raxNode *postfix = NULL;

if (trimmedlen) {
    nodesize = sizeof(raxNode)+trimmedlen+sizeof(raxNode*);
    if (h->iskey && !h->isnull) nodesize += sizeof(void*);
    trimmed = rax_malloc(nodesize);
}

if (postfixlen) {
    nodesize = sizeof(raxNode)+postfixlen+
               sizeof(raxNode*);
    postfix = rax_malloc(nodesize);
}

/* OOM? Abort now that the tree is untouched. */
if (splitnode == NULL ||
    (trimmedlen && trimmed == NULL) ||
    (postfixlen && postfix == NULL))
{
    rax_free(splitnode);
    rax_free(trimmed);
    rax_free(postfix);
    errno = ENOMEM;
    return 0;
}
splitnode->data[0] = h->data[j];

请添加图片描述

3.4.2.2.3 处理压缩节点前半部分
 if (j == 0) {
  /* 3a: Replace the old node with the split node. */
    if (h->iskey) {
        void *ndata = raxGetData(h);
        raxSetData(splitnode,ndata);
    }
    memcpy(parentlink,&splitnode,sizeof(splitnode));
} else {
    /* 3b: Trim the compressed node. */
    trimmed->size = j;
    memcpy(trimmed->data,h->data,j);
    trimmed->iscompr = j > 1 ? 1 : 0;
    trimmed->iskey = h->iskey;
    trimmed->isnull = h->isnull;
    if (h->iskey && !h->isnull) {
        void *ndata = raxGetData(h);
        raxSetData(trimmed,ndata);
    }
    raxNode **cp = raxNodeLastChildPtr(trimmed);
    memcpy(cp,&splitnode,sizeof(splitnode));
    memcpy(parentlink,&trimmed,sizeof(trimmed));
    parentlink = cp; /* Set parentlink to splitnode parent. */
    rax->numnodes++;
 }

请添加图片描述

3.4.2.2.4 处理压缩节点后半部分
/* 4: Create the postfix node: what remains of the original
* compressed node after the split. */
if (postfixlen) {
    /* 4a: create a postfix node. */
    postfix->iskey = 0;
    postfix->isnull = 0;
    postfix->size = postfixlen;
    postfix->iscompr = postfixlen > 1;
    memcpy(postfix->data,h->data+j+1,postfixlen);
    raxNode **cp = raxNodeLastChildPtr(postfix);
    memcpy(cp,&next,sizeof(next));
    rax->numnodes++;
} else {
    /* 4b: just use next as postfix node. */
    postfix = next;
}

请添加图片描述

3.4.2.2.5 连接拆分节点
 /* 5: Set splitnode first child as the postfix node. */
raxNode **splitchild = raxNodeLastChildPtr(splitnode);
memcpy(splitchild,&postfix,sizeof(postfix));

请添加图片描述

3.4.2.2.6 释放老节点
 /* 6. Continue insertion: this will cause the splitnode to
* get a new child (the non common character at the currently
 * inserted key). */
rax_free(h);
h = splitnode;

请添加图片描述

3.4.2.3 插入后续数据

3.4.2.3.1 插入剩余数据
while(i < len) {
        raxNode *child;

        /* If this node is going to have a single child, and there
         * are other characters, so that that would result in a chain
         * of single-childed nodes, turn it into a compressed node. */
        if (h->size == 0 && len-i > 1) {
            debugf("Inserting compressed node\n");
            size_t comprsize = len-i;
            if (comprsize > RAX_NODE_MAX_SIZE)
                comprsize = RAX_NODE_MAX_SIZE;
            raxNode *newh = raxCompressNode(h,s+i,comprsize,&child);
            if (newh == NULL) goto oom;
            h = newh;
            memcpy(parentlink,&h,sizeof(h));
            parentlink = raxNodeLastChildPtr(h);
            i += comprsize;
        } else {
            debugf("Inserting normal node\n");
            raxNode **new_parentlink;
            raxNode *newh = raxAddChild(h,s[i],&child,&new_parentlink);
            if (newh == NULL) goto oom;
            h = newh;
            memcpy(parentlink,&h,sizeof(h));
            parentlink = new_parentlink;
            i++;
        }
        rax->numnodes++;
        h = child;
    }

当前插入的h节点h->size == 1, 所以进入else分支
raxAddChild函数主要创建子节点,并且移动数据,将新节点插入到对应的位置(字典序)

/* Add a new child to the node 'n' representing the character 'c' and return
 * its new pointer, as well as the child pointer by reference. Additionally
 * '***parentlink' is populated with the raxNode pointer-to-pointer of where
 * the new child was stored, which is useful for the caller to replace the
 * child pointer if it gets reallocated.
 *
 * On success the new parent node pointer is returned (it may change because
 * of the realloc, so the caller should discard 'n' and use the new value).
 * On out of memory NULL is returned, and the old node is still valid. */
raxNode *raxAddChild(raxNode *n, unsigned char c, raxNode **childptr, raxNode ***parentlink) {
    assert(n->iscompr == 0);

    size_t curlen = sizeof(raxNode)+
                    n->size+
                    sizeof(raxNode*)*n->size;
    size_t newlen;

    /* Alloc the new child we will link to 'n'. */
    raxNode *child = raxNewNode(0,0);
    if (child == NULL) return NULL;

    /* Make space in the original node. */
    if (n->iskey) curlen += sizeof(void*);
    newlen = curlen+sizeof(raxNode*)+1; /* Add 1 char and 1 pointer. */
    raxNode *newn = rax_realloc(n,newlen);
    if (newn == NULL) {
        rax_free(child);
        return NULL;
    }
    n = newn;

    /* After the reallocation, we have 5/9 (depending on the system
     * pointer size) bytes at the end, that is, the additional char
     * in the 'data' section, plus one pointer to the new child:
     *
     * [numc][abx][ap][bp][xp]|auxp|.....
     *
     * Let's find where to insert the new child in order to make sure
     * it is inserted in-place lexicographically. */
    int pos;
    for (pos = 0; pos < n->size; pos++) {
        if (n->data[pos] > c) break;
    }

    /* Now, if present, move auxiliary data pointer at the end
     * so that we can mess with the other data without overwriting it.
     * We will obtain something like that:
     *
     * [numc][abx][ap][bp][xp].....|auxp| */
    unsigned char *src;
    if (n->iskey && !n->isnull) {
        src = n->data+n->size+sizeof(raxNode*)*n->size;
        memmove(src+1+sizeof(raxNode*),src,sizeof(void*));
    }

    /* Now imagine we are adding a node with edge 'c'. The insertion
     * point is between 'b' and 'x', so the 'pos' variable value is
     * To start, move all the child pointers after the insertion point
     * of 1+sizeof(pointer) bytes on the right, to obtain:
     *
     * [numc][abx][ap][bp].....[xp]|auxp| */
    src = n->data+n->size+sizeof(raxNode*)*pos;
    memmove(src+1+sizeof(raxNode*),src,sizeof(raxNode*)*(n->size-pos));

    /* Now make the space for the additional char in the data section,
     * but also move the pointers before the insertion point in the right
     * by 1 byte, in order to obtain the following:
     *
     * [numc][ab.x][ap][bp]....[xp]|auxp| */
    src = n->data+pos;
    memmove(src+1,src,n->size-pos+sizeof(raxNode*)*pos);

    /* We can now set the character and its child node pointer to get:
     *
     * [numc][abcx][ap][bp][cp]....|auxp|
     * [numc][abcx][ap][bp][cp][xp]|auxp| */
    n->data[pos] = c;
    n->size++;
    raxNode **childfield = (raxNode**)(n->data+n->size+sizeof(raxNode*)*pos);
    memcpy(childfield,&child,sizeof(child));
    *childptr = child;
    *parentlink = childfield;
    return n;
}

请添加图片描述

  • 进入第二次while
    满足 if (h->size == 0 && len-i > 1) {, 插入压缩节点
    请添加图片描述
3.4.2.3.2 插入value
raxNode *newh = raxReallocForData(h,data);
if (newh == NULL) goto oom;
h = newh;
if (!h->iskey) rax->numele++;
raxSetData(h,data);
memcpy(parentlink,&h,sizeof(h));
return 1; /* Element inserted. */

请添加图片描述

3.4.3 插入“ANNE”

raxInsert(rax, "ANNE", 4, NULL, NULL) ;

3.4.3.1 定位插入位置

请添加图片描述

3.4.3.2 插入节点为压缩节点

满足算法1

3.4.3.2.1 保存next指针
/* 1: Save next pointer. */
raxNode **childfield = raxNodeLastChildPtr(h);
raxNode *next;
memcpy(&next,childfield,sizeof(next));

请添加图片描述

3.4.3.2.2 创建拆分节点
 /* Set the length of the additional nodes we will need. */
size_t trimmedlen = j;
size_t postfixlen = h->size - j - 1;
int split_node_is_key = !trimmedlen && h->iskey && !h->isnull;
size_t nodesize;

/* 2: Create the split node. Also allocate the other nodes we'll need
 *    ASAP, so that it will be simpler to handle OOM. */
raxNode *splitnode = raxNewNode(1, split_node_is_key);
raxNode *trimmed = NULL;
raxNode *postfix = NULL;

if (trimmedlen) {
    nodesize = sizeof(raxNode)+trimmedlen+sizeof(raxNode*);
    if (h->iskey && !h->isnull) nodesize += sizeof(void*);
    trimmed = rax_malloc(nodesize);
}

if (postfixlen) {
    nodesize = sizeof(raxNode)+postfixlen+
               sizeof(raxNode*);
    postfix = rax_malloc(nodesize);
}

/* OOM? Abort now that the tree is untouched. */
if (splitnode == NULL ||
    (trimmedlen && trimmed == NULL) ||
    (postfixlen && postfix == NULL))
{
    rax_free(splitnode);
    rax_free(trimmed);
    rax_free(postfix);
    errno = ENOMEM;
    return 0;
}
 splitnode->data[0] = h->data[j];

请添加图片描述

3.4.3.2.3 处理压缩节点前半部分
 if (j == 0) {
 /* 3a: Replace the old node with the split node. */
    if (h->iskey) {
        void *ndata = raxGetData(h);
        raxSetData(splitnode,ndata);
    }
    memcpy(parentlink,&splitnode,sizeof(splitnode));
} else {
    /* 3b: Trim the compressed node. */
    trimmed->size = j;
    memcpy(trimmed->data,h->data,j);
    trimmed->iscompr = j > 1 ? 1 : 0;
    trimmed->iskey = h->iskey;
    trimmed->isnull = h->isnull;
    if (h->iskey && !h->isnull) {
        void *ndata = raxGetData(h);
        raxSetData(trimmed,ndata);
    }
    raxNode **cp = raxNodeLastChildPtr(trimmed);
    memcpy(cp,&splitnode,sizeof(splitnode));
    memcpy(parentlink,&trimmed,sizeof(trimmed));
    parentlink = cp; /* Set parentlink to splitnode parent. */
    rax->numnodes++;
}

请添加图片描述

3.4.3.2.4 处理后半部分
  /* 4: Create the postfix node: what remains of the original
 * compressed node after the split. */
  if (postfixlen) {
      /* 4a: create a postfix node. */
      postfix->iskey = 0;
      postfix->isnull = 0;
      postfix->size = postfixlen;
      postfix->iscompr = postfixlen > 1;
      memcpy(postfix->data,h->data+j+1,postfixlen);
      raxNode **cp = raxNodeLastChildPtr(postfix);
      memcpy(cp,&next,sizeof(next));
      rax->numnodes++;
  } else {
      /* 4b: just use next as postfix node. */
      postfix = next;
  }

因postfixlen=0, 所以只是执行了简单的posfix=next
请添加图片描述

3.4.3.2.5 连接拆分节点
 /* 5: Set splitnode first child as the postfix node. */
raxNode **splitchild = raxNodeLastChildPtr(splitnode);
memcpy(splitchild,&postfix,sizeof(postfix));

请添加图片描述

3.4.3.2.6 释放被拆分节点
 /* 6. Continue insertion: this will cause the splitnode to
* get a new child (the non common character at the currently
 * inserted key). */
rax_free(h);
h = splitnode;

请添加图片描述

3.4.3.3 处理后续数据

3.4.3.3.1 处理剩余数据

没有剩余数据

3.4.3.3.2 插入value
  • 扩容,用于存储value,本例子中data为null,不需要分配空间
raxNode *newh = raxReallocForData(h,data);
if (newh == NULL) goto oom;
h = newh;
  • 增加元素个数
  if (!h->iskey) rax->numele++;

请添加图片描述

  • 设置值
 raxSetData(h,data);

请添加图片描述

  • 重新赋值连接
    因为前面扩容重新分配空间,可能导致h地址改变,所以需要重新设置连接
memcpy(parentlink,&h,sizeof(h));
return 1; /* Element inserted. */

3.4.4 插入 “AGO”

char *data = malloc(100);
strcpy(data, "this is test!");
raxInsert(rax, "AGO", 3, data, NULL) ;

3.4.4.1 定位插入位置

请添加图片描述

3.4.4.2 插入节点为压缩节点

3.4.4.2.1 保存next指针

请添加图片描述

3.4.4.2.2 创建拆分节点

请添加图片描述

3.4.4.2.3 处理压缩节点前半部分

请添加图片描述

3.4.4.2.4 处理压缩节点后半部分

请添加图片描述

3.4.4.3.5 连接拆分节点

请添加图片描述

3.4.4.3.6 释放被拆分节点

请添加图片描述

3.4.4.3 处理后续数据

3.4.4.3.1 处理剩余数据
  • 插入正常节点
    请添加图片描述
  • 插入正常节点
    请添加图片描述
3.4.4.3.2 插入value
  • 扩容请添加图片描述

  • 设置值
    请添加图片描述

删除

相对于插入,在删除第一步查找过程中,会将经历过的节点加入栈中,后续循环处理,并且因节点的删除,某些节点需要合并成压缩节点。

/* Remove the specified item. Returns 1 if the item was found and
 * deleted, 0 otherwise. */
int raxRemove(rax *rax, unsigned char *s, size_t len, void **old) {
    raxNode *h;
    raxStack ts;

    debugf("### Delete: %.*s\n", (int)len, s);
    raxStackInit(&ts);
    int splitpos = 0;
    size_t i = raxLowWalk(rax,s,len,&h,NULL,&splitpos,&ts);
    if (i != len || (h->iscompr && splitpos != 0) || !h->iskey) {
        raxStackFree(&ts);
        return 0;
    }
    if (old) *old = raxGetData(h);
    h->iskey = 0;
    rax->numele--;

    /* If this node has no children, the deletion needs to reclaim the
     * no longer used nodes. This is an iterative process that needs to
     * walk the three upward, deleting all the nodes with just one child
     * that are not keys, until the head of the rax is reached or the first
     * node with more than one child is found. */

    int trycompress = 0; /* Will be set to 1 if we should try to optimize the
                            tree resulting from the deletion. */

    if (h->size == 0) {
        debugf("Key deleted in node without children. Cleanup needed.\n");
        raxNode *child = NULL;
        while(h != rax->head) {
            child = h;
            debugf("Freeing child %p [%.*s] key:%d\n", (void*)child,
                (int)child->size, (char*)child->data, child->iskey);
            rax_free(child);
            rax->numnodes--;
            h = raxStackPop(&ts);
             /* If this node has more then one child, or actually holds
              * a key, stop here. */
            if (h->iskey || (!h->iscompr && h->size != 1)) break;
        }
        if (child) {
            debugf("Unlinking child %p from parent %p\n",
                (void*)child, (void*)h);
            raxNode *new = raxRemoveChild(h,child);
            if (new != h) {
                raxNode *parent = raxStackPeek(&ts);
                raxNode **parentlink;
                if (parent == NULL) {
                    parentlink = &rax->head;
                } else {
                    parentlink = raxFindParentLink(parent,h);
                }
                memcpy(parentlink,&new,sizeof(new));
            }

            /* If after the removal the node has just a single child
             * and is not a key, we need to try to compress it. */
            if (new->size == 1 && new->iskey == 0) {
                trycompress = 1;
                h = new;
            }
        }
    } else if (h->size == 1) {
        /* If the node had just one child, after the removal of the key
         * further compression with adjacent nodes is pontentially possible. */
        trycompress = 1;
    }

    /* Don't try node compression if our nodes pointers stack is not
     * complete because of OOM while executing raxLowWalk() */
    if (trycompress && ts.oom) trycompress = 0;

    /* Recompression: if trycompress is true, 'h' points to a radix tree node
     * that changed in a way that could allow to compress nodes in this
     * sub-branch. Compressed nodes represent chains of nodes that are not
     * keys and have a single child, so there are two deletion events that
     * may alter the tree so that further compression is needed:
     *
     * 1) A node with a single child was a key and now no longer is a key.
     * 2) A node with two children now has just one child.
     *
     * We try to navigate upward till there are other nodes that can be
     * compressed, when we reach the upper node which is not a key and has
     * a single child, we scan the chain of children to collect the
     * compressable part of the tree, and replace the current node with the
     * new one, fixing the child pointer to reference the first non
     * compressable node.
     *
     * Example of case "1". A tree stores the keys "FOO" = 1 and
     * "FOOBAR" = 2:
     *
     *
     * "FOO" -> "BAR" -> [] (2)
     *           (1)
     *
     * After the removal of "FOO" the tree can be compressed as:
     *
     * "FOOBAR" -> [] (2)
     *
     *
     * Example of case "2". A tree stores the keys "FOOBAR" = 1 and
     * "FOOTER" = 2:
     *
     *          |B| -> "AR" -> [] (1)
     * "FOO" -> |-|
     *          |T| -> "ER" -> [] (2)
     *
     * After the removal of "FOOTER" the resulting tree is:
     *
     * "FOO" -> |B| -> "AR" -> [] (1)
     *
     * That can be compressed into:
     *
     * "FOOBAR" -> [] (1)
     */
    if (trycompress) {
        debugf("After removing %.*s:\n", (int)len, s);
        debugnode("Compression may be needed",h);
        debugf("Seek start node\n");

        /* Try to reach the upper node that is compressible.
         * At the end of the loop 'h' will point to the first node we
         * can try to compress and 'parent' to its parent. */
        raxNode *parent;
        while(1) {
            parent = raxStackPop(&ts);
            if (!parent || parent->iskey ||
                (!parent->iscompr && parent->size != 1)) break;
            h = parent;
            debugnode("Going up to",h);
        }
        raxNode *start = h; /* Compression starting node. */

        /* Scan chain of nodes we can compress. */
        size_t comprsize = h->size;
        int nodes = 1;
        while(h->size != 0) {
            raxNode **cp = raxNodeLastChildPtr(h);
            memcpy(&h,cp,sizeof(h));
            if (h->iskey || (!h->iscompr && h->size != 1)) break;
            /* Stop here if going to the next node would result into
             * a compressed node larger than h->size can hold. */
            if (comprsize + h->size > RAX_NODE_MAX_SIZE) break;
            nodes++;
            comprsize += h->size;
        }
        if (nodes > 1) {
            /* If we can compress, create the new node and populate it. */
            size_t nodesize =
                sizeof(raxNode)+comprsize+sizeof(raxNode*);
            raxNode *new = rax_malloc(nodesize);
            /* An out of memory here just means we cannot optimize this
             * node, but the tree is left in a consistent state. */
            if (new == NULL) {
                raxStackFree(&ts);
                return 1;
            }
            new->iskey = 0;
            new->isnull = 0;
            new->iscompr = 1;
            new->size = comprsize;
            rax->numnodes++;

            /* Scan again, this time to populate the new node content and
             * to fix the new node child pointer. At the same time we free
             * all the nodes that we'll no longer use. */
            comprsize = 0;
            h = start;
            while(h->size != 0) {
                memcpy(new->data+comprsize,h->data,h->size);
                comprsize += h->size;
                raxNode **cp = raxNodeLastChildPtr(h);
                raxNode *tofree = h;
                memcpy(&h,cp,sizeof(h));
                rax_free(tofree); rax->numnodes--;
                if (h->iskey || (!h->iscompr && h->size != 1)) break;
            }
            debugnode("New node",new);

            /* Now 'h' points to the first node that we still need to use,
             * so our new node child pointer will point to it. */
            raxNode **cp = raxNodeLastChildPtr(new);
            memcpy(cp,&h,sizeof(h));

            /* Fix parent link. */
            if (parent) {
                raxNode **parentlink = raxFindParentLink(parent,start);
                memcpy(parentlink,&new,sizeof(new));
            } else {
                rax->head = new;
            }

            debugf("Compressed %d nodes, %d total bytes\n",
                nodes, (int)comprsize);
        }
    }
    raxStackFree(&ts);
    return 1;
}

3.5.1 删除“ANNIENTARE”

raxRemove(rax, "ANNIENTARE", 10, NULL) {

3.5.1.1 初始化路径栈

 raxStackInit(&ts);
 static inline void raxStackInit(raxStack *ts) {
    ts->stack = ts->static_items;
    ts->items = 0;
    ts->maxitems = RAX_STACK_STATIC_ITEMS;
    ts->oom = 0;
}

栈结构内有一个静态的数组,当处理的个数小于32个时,避免频繁分配空间,当处理的个数大于32时,将动态的分配空间,并且扩容策略:大小翻倍

#define RAX_STACK_STATIC_ITEMS 32
typedef struct raxStack {
    void **stack; /* Points to static_items or an heap allocated array. */
    size_t items, maxitems; /* Number of items contained and total space. */
    /* Up to RAXSTACK_STACK_ITEMS items we avoid to allocate on the heap
     * and use this static array of pointers instead. */
    void *static_items[RAX_STACK_STATIC_ITEMS];
    int oom; /* True if pushing into this stack failed for OOM at some point. */
} raxStack;

3.5.1.2 查找删除key,并且记录搜索路径栈

size_t i = raxLowWalk(rax,s,len,&h,NULL,&splitpos,&ts);
if (i != len || (h->iscompr && splitpos != 0) || !h->iskey) {
     raxStackFree(&ts);
     return 0;
 }

请添加图片描述

3.5.1.3 保存删除节点数据

 if (old) *old = raxGetData(h);

3.5.1.4 减少元素个数

h->iskey = 0;
rax->numele--;

请添加图片描述

3.5.1.5 删除不在使用的节点

 /* If this node has no children, the deletion needs to reclaim the
     * no longer used nodes. This is an iterative process that needs to
     * walk the three upward, deleting all the nodes with just one child
     * that are not keys, until the head of the rax is reached or the first
     * node with more than one child is found. */

    int trycompress = 0; /* Will be set to 1 if we should try to optimize the
                            tree resulting from the deletion. */

    if (h->size == 0) {
        debugf("Key deleted in node without children. Cleanup needed.\n");
        raxNode *child = NULL;
        while(h != rax->head) {
            child = h;
            debugf("Freeing child %p [%.*s] key:%d\n", (void*)child,
                (int)child->size, (char*)child->data, child->iskey);
            rax_free(child);
            rax->numnodes--;
            h = raxStackPop(&ts);
             /* If this node has more then one child, or actually holds
              * a key, stop here. */
            if (h->iskey || (!h->iscompr && h->size != 1)) break;
        }
      ...
    } 

请添加图片描述

if (child) {
     debugf("Unlinking child %p from parent %p\n",
         (void*)child, (void*)h);
     raxNode *new = raxRemoveChild(h,child);
     if (new != h) {
         raxNode *parent = raxStackPeek(&ts);
         raxNode **parentlink;
         if (parent == NULL) {
             parentlink = &rax->head;
         } else {
             parentlink = raxFindParentLink(parent,h);
         }
         memcpy(parentlink,&new,sizeof(new));
     }

     /* If after the removal the node has just a single child
      * and is not a key, we need to try to compress it. */
     if (new->size == 1 && new->iskey == 0) {
         trycompress = 1;
         h = new;
     }
 }
/* Low level child removal from node. The new node pointer (after the child
 * removal) is returned. Note that this function does not fix the pointer
 * of the parent node in its parent, so this task is up to the caller.
 * The function never fails for out of memory. */
raxNode *raxRemoveChild(raxNode *parent, raxNode *child) {
    debugnode("raxRemoveChild before", parent);
    /* If parent is a compressed node (having a single child, as for definition
     * of the data structure), the removal of the child consists into turning
     * it into a normal node without children. */
    if (parent->iscompr) {
        void *data = NULL;
        if (parent->iskey) data = raxGetData(parent);
        parent->isnull = 0;
        parent->iscompr = 0;
        parent->size = 0;
        if (parent->iskey) raxSetData(parent,data);
        debugnode("raxRemoveChild after", parent);
        return parent;
    }

    /* Otherwise we need to scan for the children pointer and memmove()
     * accordingly.
     *
     * 1. To start we seek the first element in both the children
     *    pointers and edge bytes in the node. */
    raxNode **cp = raxNodeFirstChildPtr(parent);
    raxNode **c = cp;
    unsigned char *e = parent->data;

    /* 2. Search the child pointer to remove inside the array of children
     *    pointers. */
    while(1) {
        raxNode *aux;
        memcpy(&aux,c,sizeof(aux));
        if (aux == child) break;
        c++;
        e++;
    }

    /* 3. Remove the edge and the pointer by memmoving the remaining children
     *    pointer and edge bytes one position before. */
    int taillen = parent->size - (e - parent->data) - 1;
    debugf("raxRemoveChild tail len: %d\n", taillen);
    memmove(e,e+1,taillen);

    /* Since we have one data byte less, also child pointers start one byte
     * before now. */
    memmove(((char*)cp)-1,cp,(parent->size-taillen-1)*sizeof(raxNode**));

    /* Move the remaining "tail" pointer at the right position as well. */
    memmove(((char*)c)-1,c+1,taillen*sizeof(raxNode**)+parent->iskey*sizeof(void*));

    /* 4. Update size. */
    parent->size--;

    /* realloc the node according to the theoretical memory usage, to free
     * data if we are over-allocating right now. */
    raxNode *newnode = rax_realloc(parent,raxNodeCurrentLength(parent));
    if (newnode) {
        debugnode("raxRemoveChild after", newnode);
    }
    /* Note: if rax_realloc() fails we just return the old address, which
     * is valid. */
    return newnode ? newnode : parent;
}

请添加图片描述

3.5.1.6 尝试压缩节点

3.5.1.6.1 查找可压缩的第一个节点
/* Try to reach the upper node that is compressible.
 * At the end of the loop 'h' will point to the first node we
 * can try to compress and 'parent' to its parent. */
raxNode *parent;
while(1) {
    parent = raxStackPop(&ts);
    if (!parent || parent->iskey ||
        (!parent->iscompr && parent->size != 1)) break;
    h = parent;
    debugnode("Going up to",h);
}
raxNode *start = h; /* Compression starting node. */

请添加图片描述

3.5.1.6.2 扫描整个可压缩链路
/* Scan chain of nodes we can compress. */
 size_t comprsize = h->size;
 int nodes = 1;
 while(h->size != 0) {
     raxNode **cp = raxNodeLastChildPtr(h);
     memcpy(&h,cp,sizeof(h));
     if (h->iskey || (!h->iscompr && h->size != 1)) break;
     /* Stop here if going to the next node would result into
      * a compressed node larger than h->size can hold. */
     if (comprsize + h->size > RAX_NODE_MAX_SIZE) break;
     nodes++;
     comprsize += h->size;
 }

请添加图片描述

3.5.1.6.3 节点压缩

if (nodes > 1) 满足条件,所以可以进行节点压缩

  • 创建新的压缩节点
/* Ifwe can compress, create the new node and populate it. */
 size_t nodesize =
     sizeof(raxNode)+comprsize+sizeof(raxNode*);
 raxNode *new = rax_malloc(nodesize);
 /* An out of memory here just means we cannot optimize this
  * node, but the tree is left in a consistent state. */
 if (new == NULL) {
     raxStackFree(&ts);
     return 1;
 }
 new->iskey = 0;
 new->isnull = 0;
 new->iscompr = 1;
 new->size = comprsize;
 rax->numnodes++;

请添加图片描述

  • 再次扫描,给新节点赋值,并且释放老节点
/* Scan again, this time to populate the new node content and
 * to fix the new node child pointer. At the same time we free
 * all the nodes that we'll no longer use. */
comprsize = 0;
h = start;
while(h->size != 0) {
    memcpy(new->data+comprsize,h->data,h->size);
    comprsize += h->size;
    raxNode **cp = raxNodeLastChildPtr(h);
    raxNode *tofree = h;
    memcpy(&h,cp,sizeof(h));
    rax_free(tofree); rax->numnodes--;
    if (h->iskey || (!h->iscompr && h->size != 1)) break;
}
    debugnode("New node",new);

请添加图片描述

  • 重新连接节点连接
    /* Now 'h' points to the first node that we still need to use,
     * so our new node child pointer will point to it. */
    raxNode **cp = raxNodeLastChildPtr(new);
    memcpy(cp,&h,sizeof(h));

    /* Fix parent link. */
    if (parent) {
        raxNode **parentlink = raxFindParentLink(parent,start);
        memcpy(parentlink,&new,sizeof(new));
    } else {
        rax->head = new;
    }

请添加图片描述

3.5.1.6 释放栈

raxStackFree(&ts);
/* Free the stack in case we used heap allocation. */
static inline void raxStackFree(raxStack *ts) {
    if (ts->stack != ts->static_items) rax_free(ts->stack);
}
  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2021-09-27 14:09:28  更:2021-09-27 14:11:27 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/18 10:50:44-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码