IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> Optimizer trance—mysql进阶(五十三) -> 正文阅读

[大数据]Optimizer trance—mysql进阶(五十三)

前面介绍了,如果加个format=JOSN会把数据以json的格式返回,如果想看查询的额外信息,还可以在explain之后加个show warning查看,其中如果code为1003,则代表message里的内容是mysql优化器优化之后的sql。

JSON格式执行计划(6)—mysql执行计划(五十二)

对于mysql5.6之前的版本说,mysql像黑盒子,只能通过explain语句查看最后优化器决定使用的执行计划,却无法知道他做什么决定。在mysql5.6之后,mysql设计为我们贴心的加了optimizer trance,这个功能方便我们执行优化器的过程,这个功能的开启和关闭由系统变量optimizer_trance决定。

mysql> show variables like 'optimizer_trace';

+-----------------+--------------------------+

| Variable_name?? | Value??????????????????? |

+-----------------+--------------------------+

| optimizer_trace | enabled=off,one_line=off |

+-----------------+--------------------------+

1 row in set (0.01 sec)

这里可以看到系统变量默认是关闭的, 如果开启需要改成on。这里one_line表示在一行展示,我们默认就关闭,不然不方便我们观看。

mysql> SET optimizer_trace="enabled=on";

Query OK, 0 rows affected (0.00 sec)

当我们设置为on的时候,则会打开,当我们输入我们想看的sql语句查询之后,就可以看information_schema数据库下的optimizer_trace表中查看完整优化过程。

当我们查看之后,可以看到四个部分:

  1. Query:表示我们的查询语句。
  2. trace:表示优化过程的JSON格式文本。
  3. MISSING_BUTES_BEYOND_MAX_MEM_SIZE:由于优化过程可能输出很多,如果超过某个限制,多余文本将不会被显示,展示被忽略的文本字段。
  4. INSUFFICIENT_PRIVILEGS:表示是否没有权限查看优化过程,默认是0,只有某些特殊情况才是1。
SET optimizer_trace="enabled=on";

SELECT * FROM s1 WHERE 
    key1 > 'z' AND 
    key2 < 1000000 AND 
    key3 IN ('a', 'b', 'c') AND 
    common_field = 'abc';
    
SELECT * FROM information_schema.OPTIMIZER_TRACE\G    

之后就可以看到显示:

*************************** 1. row ***************************
# 分析的查询语句是什么
QUERY: SELECT * FROM s1 WHERE
    key1 > 'z' AND
    key2 < 1000000 AND
    key3 IN ('a', 'b', 'c') AND
    common_field = 'abc'

# 优化的具体过程
TRACE: {
  "steps": [
    {
      "join_preparation": {     # prepare阶段
        "select#": 1,
        "steps": [
          {
            "IN_uses_bisection": true
          },
          {
            "expanded_query": "/* select#1 */ select `s1`.`id` AS `id`,`s1`.`key1` AS `key1`,`s1`.`key2` AS `key2`,`s1`.`key3` AS `key3`,`s1`.`key_part1` AS `key_part1`,`s1`.`key_part2` AS `key_part2`,`s1`.`key_part3` AS `key_part3`,`s1`.`common_field` AS `common_field` from `s1` where ((`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('a','b','c')) and (`s1`.`common_field` = 'abc'))"
          }
        ] /* steps */
      } /* join_preparation */
    },
    {
      "join_optimization": {    # optimize阶段
        "select#": 1,
        "steps": [
          {
            "condition_processing": {   # 处理搜索条件
              "condition": "WHERE",
              # 原始搜索条件
              "original_condition": "((`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('a','b','c')) and (`s1`.`common_field` = 'abc'))",
              "steps": [
                {
                  # 等值传递转换
                  "transformation": "equality_propagation",
                  "resulting_condition": "((`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('a','b','c')) and (`s1`.`common_field` = 'abc'))"
                },
                {
                  # 常量传递转换    
                  "transformation": "constant_propagation",
                  "resulting_condition": "((`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('a','b','c')) and (`s1`.`common_field` = 'abc'))"
                },
                {
                  # 去除没用的条件
                  "transformation": "trivial_condition_removal",
                  "resulting_condition": "((`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('a','b','c')) and (`s1`.`common_field` = 'abc'))"
                }
              ] /* steps */
            } /* condition_processing */
          },
          {
            # 替换虚拟生成列
            "substitute_generated_columns": {
            } /* substitute_generated_columns */
          },
          {
            # 表的依赖信息
            "table_dependencies": [
              {
                "table": "`s1`",
                "row_may_be_null": false,
                "map_bit": 0,
                "depends_on_map_bits": [
                ] /* depends_on_map_bits */
              }
            ] /* table_dependencies */
          },
          {
            "ref_optimizer_key_uses": [
            ] /* ref_optimizer_key_uses */
          },
          {
          
            # 预估不同单表访问方法的访问成本
            "rows_estimation": [
              {
                "table": "`s1`",
                "range_analysis": {
                  "table_scan": {   # 全表扫描的行数以及成本
                    "rows": 9688,
                    "cost": 2036.7
                  } /* table_scan */,
                  
                  # 分析可能使用的索引
                  "potential_range_indexes": [
                    {
                      "index": "PRIMARY",   # 主键不可用
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "idx_key2",  # idx_key2可能被使用
                      "usable": true,
                      "key_parts": [
                        "key2"
                      ] /* key_parts */
                    },
                    {
                      "index": "idx_key1",  # idx_key1可能被使用
                      "usable": true,
                      "key_parts": [
                        "key1",
                        "id"
                      ] /* key_parts */
                    },
                    {
                      "index": "idx_key3",  # idx_key3可能被使用
                      "usable": true,
                      "key_parts": [
                        "key3",
                        "id"
                      ] /* key_parts */
                    },
                    {
                      "index": "idx_key_part",  # idx_keypart不可用
                      "usable": false,
                      "cause": "not_applicable"
                    }
                  ] /* potential_range_indexes */,
                  "setup_range_conditions": [
                  ] /* setup_range_conditions */,
                  "group_index_range": {
                    "chosen": false,
                    "cause": "not_group_by_or_distinct"
                  } /* group_index_range */,
                  
                  # 分析各种可能使用的索引的成本
                  "analyzing_range_alternatives": {
                    "range_scan_alternatives": [
                      {
                        # 使用idx_key2的成本分析
                        "index": "idx_key2",
                        # 使用idx_key2的范围区间
                        "ranges": [
                          "NULL < key2 < 1000000"
                        ] /* ranges */,
                        "index_dives_for_eq_ranges": true,   # 是否使用index dive
                        "rowid_ordered": false,     # 使用该索引获取的记录是否按照主键排序
                        "using_mrr": false,     # 是否使用mrr
                        "index_only": false,    # 是否是索引覆盖访问
                        "rows": 12,     # 使用该索引获取的记录条数
                        "cost": 15.41,  # 使用该索引的成本
                        "chosen": true  # 是否选择该索引
                      },
                      {
                        # 使用idx_key1的成本分析
                        "index": "idx_key1",
                        # 使用idx_key1的范围区间
                        "ranges": [
                          "z < key1"
                        ] /* ranges */,
                        "index_dives_for_eq_ranges": true,   # 同上
                        "rowid_ordered": false,   # 同上
                        "using_mrr": false,   # 同上
                        "index_only": false,   # 同上
                        "rows": 266,   # 同上
                        "cost": 320.21,   # 同上
                        "chosen": false,   # 同上
                        "cause": "cost"   # 因为成本太大所以不选择该索引
                      },
                      {
                        # 使用idx_key3的成本分析
                        "index": "idx_key3",
                        # 使用idx_key3的范围区间
                        "ranges": [
                          "a <= key3 <= a",
                          "b <= key3 <= b",
                          "c <= key3 <= c"
                        ] /* ranges */,
                        "index_dives_for_eq_ranges": true,   # 同上
                        "rowid_ordered": false,   # 同上
                        "using_mrr": false,   # 同上
                        "index_only": false,   # 同上
                        "rows": 21,   # 同上
                        "cost": 28.21,   # 同上
                        "chosen": false,   # 同上
                        "cause": "cost"   # 同上
                      }
                    ] /* range_scan_alternatives */,
                    
                    # 分析使用索引合并的成本
                    "analyzing_roworder_intersect": {
                      "usable": false,
                      "cause": "too_few_roworder_scans"
                    } /* analyzing_roworder_intersect */
                  } /* analyzing_range_alternatives */,
                  
                  # 对于上述单表查询s1最优的访问方法
                  "chosen_range_access_summary": {
                    "range_access_plan": {
                      "type": "range_scan",
                      "index": "idx_key2",
                      "rows": 12,
                      "ranges": [
                        "NULL < key2 < 1000000"
                      ] /* ranges */
                    } /* range_access_plan */,
                    "rows_for_plan": 12,
                    "cost_for_plan": 15.41,
                    "chosen": true
                  } /* chosen_range_access_summary */
                } /* range_analysis */
              }
            ] /* rows_estimation */
          },
          {
            
            # 分析各种可能的执行计划
            #(对多表查询这可能有很多种不同的方案,单表查询的方案上边已经分析过了,直接选取idx_key2就好)
            "considered_execution_plans": [
              {
                "plan_prefix": [
                ] /* plan_prefix */,
                "table": "`s1`",
                "best_access_path": {
                  "considered_access_paths": [
                    {
                      "rows_to_scan": 12,
                      "access_type": "range",
                      "range_details": {
                        "used_index": "idx_key2"
                      } /* range_details */,
                      "resulting_rows": 12,
                      "cost": 17.81,
                      "chosen": true
                    }
                  ] /* considered_access_paths */
                } /* best_access_path */,
                "condition_filtering_pct": 100,
                "rows_for_plan": 12,
                "cost_for_plan": 17.81,
                "chosen": true
              }
            ] /* considered_execution_plans */
          },
          {
            # 尝试给查询添加一些其他的查询条件
            "attaching_conditions_to_tables": {
              "original_condition": "((`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('a','b','c')) and (`s1`.`common_field` = 'abc'))",
              "attached_conditions_computation": [
              ] /* attached_conditions_computation */,
              "attached_conditions_summary": [
                {
                  "table": "`s1`",
                  "attached": "((`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('a','b','c')) and (`s1`.`common_field` = 'abc'))"
                }
              ] /* attached_conditions_summary */
            } /* attaching_conditions_to_tables */
          },
          {
            # 再稍稍的改进一下执行计划
            "refine_plan": [
              {
                "table": "`s1`",
                "pushed_index_condition": "(`s1`.`key2` < 1000000)",
                "table_condition_attached": "((`s1`.`key1` > 'z') and (`s1`.`key3` in ('a','b','c')) and (`s1`.`common_field` = 'abc'))"
              }
            ] /* refine_plan */
          }
        ] /* steps */
      } /* join_optimization */
    },
    {
      "join_execution": {    # execute阶段
        "select#": 1,
        "steps": [
        ] /* steps */
      } /* join_execution */
    }
  ] /* steps */
}

# 因优化过程文本太多而丢弃的文本字节大小,值为0时表示并没有丢弃
MISSING_BYTES_BEYOND_MAX_MEM_SIZE: 0

# 权限字段
INSUFFICIENT_PRIVILEGES: 0

1 row in set (0.00 sec)

优化器追踪主要有三个部分,prepare部分,optimize阶段,execute阶段,看名字都知道,我们要着重看optimize阶段。

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2021-09-28 00:10:17  更:2021-09-28 00:10:32 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/27 14:24:31-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码