IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> ElasticSearch入门实战 -> 正文阅读

[大数据]ElasticSearch入门实战

基本概念

文档 Document

Elasticsearch 是面向文档的,这意味着索引或搜索的最小数据单元是文档

文档类似于关系数据库中的一行。不同之处在于索引中的每个文档可以具有不同的结构(字段),但是对于通用字段应该具有相同的数据类型。 MySQL => Databases =>Tables => Columns / Rows, ElasticSearch => Indices => Types =>具有属性的文档。

类型 type

类型是文档的逻辑容器,类似于表格是行的容器。最好将不同结构的文档放入不同的类型中。

索引 index

索引是大量的文档集合。 每个索引存储在磁盘上的同组文件中,它有一个定义多种类型的映射,索引存储了所有映射类型的字段。

分片 shard

由于Elasticsearch是一个分布式搜索引擎,因此索引通常会拆分为分布在多个节点上的称为分片的元素。


IK分词器

下载

下载地址:https://github.com/medcl/elasticsearch-analysis-ik/releases

安装

将ik分词器的文件放入es目录下的plugins中的 ik 目录(ik目录由自己创建)。

两种分词算法

  • ik_smart:最粗粒度的拆分(最少切分)
GET _analyze
{
  "analyzer": "ik_smart",
  "text": "一起滑雪吧"
}

运行结果
{
  "tokens" : [
    {
      "token" : "一起",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "滑雪",
      "start_offset" : 2,
      "end_offset" : 4,
      "type" : "CN_WORD",
      "position" : 1
    },
    {
      "token" : "吧",
      "start_offset" : 4,
      "end_offset" : 5,
      "type" : "CN_CHAR",
      "position" : 2
    }
  ]
}
  • ik_max_word:最细粒度划分(穷尽词库的可能)
GET _analyze
{
  "analyzer": "ik_max_word",
  "text": "一起滑雪吧"
}

运行结果
{
  "tokens" : [
    {
      "token" : "一起",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "一",
      "start_offset" : 0,
      "end_offset" : 1,
      "type" : "TYPE_CNUM",
      "position" : 1
    },
    {
      "token" : "起",
      "start_offset" : 1,
      "end_offset" : 2,
      "type" : "COUNT",
      "position" : 2
    },
    {
      "token" : "滑雪",
      "start_offset" : 2,
      "end_offset" : 4,
      "type" : "CN_WORD",
      "position" : 3
    },
    {
      "token" : "吧",
      "start_offset" : 4,
      "end_offset" : 5,
      "type" : "CN_CHAR",
      "position" : 4
    }
  ]
}

扩展词典

有些词未存在词典中,需要我们自己去扩展

GET _analyze
{
  "analyzer": "ik_smart",
  "text": "计算机组成原理"
}

运行结果
{
  "tokens" : [
    {
      "token" : "计算机",
      "start_offset" : 0,
      "end_offset" : 3,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "组成",
      "start_offset" : 3,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 1
    },
    {
      "token" : "原理",
      "start_offset" : 5,
      "end_offset" : 7,
      "type" : "CN_WORD",
      "position" : 2
    }
  ]
}

“计算机组成原理” 作为一个学科,本应是一个完整的词,不过词典中没有,需要我们手动添加进词典。

解决:

  • 打开ik下config目录下的 IKAnalyzer.cfg.xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
	<comment>IK Analyzer 扩展配置</comment>
	<!--用户可以在这里配置自己的扩展字典 -->
	<entry key="ext_dict"></entry>
	 <!--用户可以在这里配置自己的扩展停止词字典-->
	<entry key="ext_stopwords"></entry>
	<!--用户可以在这里配置远程扩展字典 -->
	<!-- <entry key="remote_ext_dict">words_location</entry> -->
	<!--用户可以在这里配置远程扩展停止词字典-->
	<!-- <entry key="remote_ext_stopwords">words_location</entry> -->
</properties>
  • 创建自己的词典:
    • 新建dic文件(mydic.dic),将 “计算机组成原理” 添加进去
    • 注意:使用UTF-8保存
  • 配置IKAnalyzer.cfg.xml
	<!--用户可以在这里配置自己的扩展字典 -->
	<entry key="ext_dict">mydic.dic</entry>
	 <!--用户可以在这里配置自己的扩展停止词字典-->
	<entry key="ext_stopwords"></entry>
  • 重启es

Restful风格操作

索引操作

  1. 创建一个索引
PUT /索引名/类型名/文档id			(类型名未来不用)
{请求体}
  • 测试
PUT /test1/type1/1
{
  "name": "SpringBoot",
  "age": 123
}
  • 创建规则(即手动加规则,否则将自动生成规则)
PUT /test2
{
  "mappings": {
    "properties": {
      "name": {
        "type": "text"
      },
      "age": {
        "type": "long"
      },
      "birthday" :{
        "type": "date"
      }
    }
  }
}
  • 查看具体信息
GET test2
  • 查看默认信息
PUT /test3/_doc/1
{
  "name": "柠檬茶",
  "age": 12,
  "birthday": "2020-11-11"
}

GET test3
  • 拓展
GET _cat/indices?v				查看各索引信息
  1. 修改
POST /test3/_doc/1/_update
{
  "doc":{
    "name": "法外狂徒张三"				//将柠檬茶修改
  }
}
  1. 删除
DELETE /test3/_doc/1			删除文档
DELETE /test3					删除索引

文档操作

  1. 添加数据
PUT /mine/user/1
{
  "name": "Kim",
  "age": 20,
  "hobbit": ["篮球","技术"]
}

PUT /mine/user/3
{
  "name": "李四",
  "age": 33,
  "hobbit": ["战斗","飞行"]
}
  1. 获取数据 GET
GET mine/user/3
{
  "_index" : "mine",
  "_type" : "user",
  "_id" : "3",
  "_version" : 1,
  "_seq_no" : 2,
  "_primary_term" : 1,
  "found" : true,
  "_source" : {
    "name" : "李四",
    "age" : 33,
    "hobbit" : [
      "战斗",
      "飞行"
    ]
  }
}
  1. 更新数据 PUT / POST(推荐)
PUT /mine/user/3
{
  "name": "李四233",
  "age": 33,
  "hobbit": ["战斗","飞行"]
}
POST /mine/user/3/_update					若少掉/_update,则跟PUT一样
{
  "doc":{
    "name": "我是Kim,不是李四"
  }
}
  • 区别:PUT需要完整信息,否则会置空
  1. 简单查询
GET mine/user/3
  1. 简单条件查询
GET mine/user/_search?q=name:Kim
复杂查询
  1. 精准匹配
GET mine/user/_search
{
  "query": {
    "match": {		
      "name": "Kim"
    }
  }
}
  • 查询结果
{
  "took" : 2,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {						//命中
    "total" : {
      "value" : 2,
      "relation" : "eq"
    },
    "max_score" : 0.93710405,		//最大权重
    "hits" : [
      {
        "_index" : "mine",
        "_type" : "user",
        "_id" : "1",
        "_score" : 0.93710405,
        "_source" : {				//未指定source,默认全部
          "name" : "Kim",
          "age" : 20,
          "hobbit" : [
            "篮球",
            "技术"
          ]
        }
      },
      {
        "_index" : "mine",
        "_type" : "user",
        "_id" : "3",
        "_score" : 0.42466223,
        "_source" : {
          "name" : "我是Kim,不是李四",
          "age" : 33,
          "hobbit" : [
            "战斗",
            "飞行"
          ]
        }
      }
    ]
  }
}
  1. 过滤结果
GET mine/user/_search
{
  "query": {
    "match": {
      "name": "Kim"
    }
  },
  "_source": ["name","age"]					//输出字段
}
  1. 排序
GET mine/user/_search
{
  "query": {
    "match": {
      "name": "Kim"
    }
  },
  "sort": [
    {
      "age": {						//通过age字段来排序
        "order": "desc"				//desc为降序;升序为asc
      }
    }
  ]
}
  1. 分页查询
GET mine/user/_search
{
  "query": {
    "match": {
      "name": "Kim"
    }
  },
  "sort": [
    {
      "age": {
        "order": "asc"
      }
    }
  ],
  "from": 0,					//从第几条数据开始
  "size": 1						//返回多少条数据(单页面数据大小)
}
  1. 布尔值查询
GET mine/user/_search
{
  "query": {
    "bool": {
      "must": [							//must相当于and
        {								//使用should则相当于or,即多条件中符合其中一个就行
          "match": {
            "name": "Kim"
          }
        },								//多条件精确查询
        {
          "match": {
            "age": 20
          }
        }
      ]
    }
  }
}
GET mine/user/_search
{
  "query": {
    "bool": {
      "must_not": [						//must_not:除去字段相匹配的数据
        {
          "match": {
            "name": "Kim"		
          }
        }
      ]
    }
  }
}
GET mine/user/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "name": "Kim"
          }
        }
      ],
      "filter": {					//过滤
        "range": {					//范围过滤
          "age": {					//通过age字段进行过滤
            "gt": 10,				//大于10
            "lte": 20				//小于等于20
          }
        }
      }
    }
  }
}
  1. 匹配多个条件
GET mine/user/_search
{
  "query": {
    "match": {
      "hobbit": "技术 音"					//多个条件使用空格隔开
    }									  //只要满足其中一个结果就可以查出
  }
}
两种类型text与keyword
  • 创建信息**(name用text,desc用keyword)**
PUT testdb
{
  "mappings": {
    "properties": {
      "name":{
        "type": "text"
      },
      "desc":{
        "type": "keyword"
      }
    }
  }
}

PUT /testdb/_doc/1
{
  "name": "狂神说java name",
  "desc": "狂神说java desc"
}

PUT /testdb/_doc/2
{
  "name": "狂神说java name",
  "desc": "狂神说java desc2"
}
  • 测试
GET _analyze
{
  "analyzer": "keyword",
  "text": "狂神说java name"
}

===============测试结果====================
{
  "tokens" : [
    {
      "token" : "狂神说java name",
      "start_offset" : 0,
      "end_offset" : 12,
      "type" : "word",
      "position" : 0
    }
  ]
}
GET _analyze
{
  "analyzer": "standard",
  "text": "狂神说java name"
}

===============测试结果====================
{
  "tokens" : [
    {
      "token" : "狂",
      "start_offset" : 0,
      "end_offset" : 1,
      "type" : "<IDEOGRAPHIC>",
      "position" : 0
    },
    {
      "token" : "神",
      "start_offset" : 1,
      "end_offset" : 2,
      "type" : "<IDEOGRAPHIC>",
      "position" : 1
    },
    {
      "token" : "说",
      "start_offset" : 2,
      "end_offset" : 3,
      "type" : "<IDEOGRAPHIC>",
      "position" : 2
    },
    {
      "token" : "java",
      "start_offset" : 3,
      "end_offset" : 7,
      "type" : "<ALPHANUM>",
      "position" : 3
    },
    {
      "token" : "name",
      "start_offset" : 8,
      "end_offset" : 12,
      "type" : "<ALPHANUM>",
      "position" : 4
    }
  ]
}
  • 总结:keyword不会被分析,而默认的standard则会被拆分
  1. 精确查询

term查询将按照存储在倒排索引中的确切字词进行操作

  • term是代表完全匹配,即不进行分词器分析关键字,文档中必须包含整个搜索的词汇

  • match和term的区别是,match查询的时候,elasticsearch会使用分词器,而term查询不会使用分词器

    match查询相当于模糊匹配,只包含关键字其中一部分关键词就行

  • 测试1

GET testdb/_search
{
  "query": {
    "term": {
      "name": {
        "value": "狂"
      }
    }
  }
}

===============测试结果====================
{
  "took" : 321,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 2,
      "relation" : "eq"
    },
    "max_score" : 0.45665967,
    "hits" : [
      {
        "_index" : "testdb",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 0.45665967,
        "_source" : {
          "name" : "狂神说java name",						//只要名字中带有“狂”的都可以
          "desc" : "狂神说java desc"
        }
      },
      {
        "_index" : "testdb",
        "_type" : "_doc",
        "_id" : "2",
        "_score" : 0.45665967,
        "_source" : {
          "name" : "狂神说java name",
          "desc" : "狂神说java desc2"
        }
      }
    ]
  }
}
  • 测试2
GET testdb/_search
{
  "query": {
    "term": {
      "desc": {
        "value": "狂神说java desc"
      }
    }
  }
}

===============测试结果====================
{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 0.9808291,
    "hits" : [
      {
        "_index" : "testdb",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 0.9808291,
        "_source" : {
          "name" : "狂神说java name",
          "desc" : "狂神说java desc"			 			//只有一个了
        }
      }
    ]
  }
}
  • 原因分析:name使用的是text,所以会被分词器解析;desc用的是keyword,所以必须完全匹配
  1. 多个值匹配的精确查询
GET testdb/_search
{
  "query": {
    "bool": {
      "should": [
        {
          "term": {
            "t1": {
              "value": "22"
            }
          }
        },
        {
          "term": {
            "t1": "33"
          }
        }
      ]
    }
  }
}
  1. 高亮查询
  • 让name字段为Kim的高亮
GET mine/user/_search
{
  "query": {
    "match": {
      "name": "Kim"
    }
  },
  "highlight": {
    "fields": {
      "name":{}
    }
  }
}
  • 结果
"highlight" : {
          "name" : [
            "<em>Kim</em>"
          ]
        }
  • 此时使用标签包裹起来,也可以自己修改
GET mine/user/_search
{
  "query": {
    "match": {
      "name": "Kim"
    }
  },
  "highlight": {
    "pre_tags": "<p class='key' style='color:red'>",			//前缀
    "post_tags": "</p>", 										//后缀
    "fields": {
      "name":{}
    }
  }
}
  • 结果
"highlight" : {
          "name" : [
            "<p class='key' style='color:red'>Kim</p>"
          ]
        }

集成SpringBoot

  • Maven原生依赖
<dependency>
    <groupId>org.elasticsearch.client</groupId>
    <artifactId>elasticsearch-rest-high-level-client</artifactId>
    <version>7.6.2</version>
</dependency>
  • 初始化
RestHighLevelClient client = new RestHighLevelClient(
        RestClient.builder(
                new HttpHost("localhost", 9200, "http"),
                new HttpHost("localhost", 9201, "http")));
  • 关闭客户端
client.close();

使用模板

  1. 创建SpringBoot项目并选中NoSQL中的ElasticSearch模块

  2. 下载下来springboot版本与es版本不一致,需要自己定义es版本依赖,保证和本地一致

	<parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>2.2.5.RELEASE</version>
        <relativePath/> 
    </parent>
    <groupId>com.Kim</groupId>
    <artifactId>es-api</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <name>es-api</name>
    <description>Demo project for Spring Boot</description>
    <properties>
        <java.version>1.8</java.version>
        
        <!--自己定义es版本依赖,保证和本地一致-->
        <elasticsearch.version>7.6.1</elasticsearch.version>
        
    </properties>
  1. 创建ElasticSearchClientConfig.java
@Configuration
public class ElasticSearchClientConfig {

    @Bean
    public RestHighLevelClient restHighLevelClient(){
        RestHighLevelClient client = new RestHighLevelClient(
                RestClient.builder(
                        new HttpHost("localhost", 9200, "http")));
        return client;
    }
}

Api测试

索引操作
  • 在测试类中创建对象
@Autowired
private RestHighLevelClient restHighLevelClient;

或者

@Autowired
@Qualifier("restHighLevelClient")
private RestHighLevelClient client;
  • 索引的创建(类似于 PUT kim_index )
/**
 * 测试索引的创建
 */
@Test
void testCreatIndex() throws IOException {
    //1.创建索引请求
    CreateIndexRequest request = new CreateIndexRequest("kim_index");
    //2.客户端执行请求(请求后获得响应)
    CreateIndexResponse response = client.indices().create(request, RequestOptions.DEFAULT);
    System.out.println(response);
}
  • 测试获取索引
/**
 * 测试获取索引(只能判断存不存在)
 */
@Test
void testExistIndex() throws IOException {
    //获得索引请求
    GetIndexRequest request = new GetIndexRequest("kim_index2");
    boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);
    System.out.println(exists);
}
  • 测试删除索引
/**
 * 测试删除索引
 */
@Test
void testDeleteIndex() throws IOException {
    DeleteIndexRequest request = new DeleteIndexRequest("kim_index");
    AcknowledgedResponse delete = client.indices().delete(request, RequestOptions.DEFAULT);
    //删除索引成功则返回true
    System.out.println(delete.isAcknowledged());
}
文档操作
  • 添加文档
/**
 * 测试添加文档
 */
@Test
void testAddDocument() throws IOException {
    //创建对象
    User user = new User("Kim", 20);
    //创建请求
    IndexRequest request = new IndexRequest("kim_index");
    //规则 PUT /kim_index/_doc/1
    request.id("1");
    request.timeout(TimeValue.timeValueSeconds(1));
    //设置超时时间(两种方法都行)
    request.timeout("1s");
    //将数据放入请求 json
    request.source(JSON.toJSONString(user), XContentType.JSON);
    //客户端发送请求,获取响应的结果
    IndexResponse indexResponse = client.index(request, RequestOptions.DEFAULT);
    System.out.println(indexResponse.toString());
    System.out.println(indexResponse.status());
}
  • 获取文档
/**
 * 获取文档,判断是否存在  GET index/_doc/1
 */
@Test
void testIsExists() throws IOException {
    GetRequest getRequest = new GetRequest("kim_index", "1");
    //不获取返回的 _source 的上下文,效率更高(可写可不写)
    getRequest.fetchSourceContext(new FetchSourceContext(false));
    boolean exists = client.exists(getRequest, RequestOptions.DEFAULT);
    System.out.println(exists);
}
  • 获取文档信息
/**
 * 获取文档信息
 */
@Test
void testGetDocument() throws IOException {
    GetRequest getRequest = new GetRequest("kim_index", "1");
    GetResponse getResponse = client.get(getRequest, RequestOptions.DEFAULT);
    System.out.println(getResponse.getSourceAsString());
    System.out.println(getResponse);
}
  • 更新文档信息
/**
 * 更新文档信息
 */
@Test
void testUpdateDocument() throws IOException {
    UpdateRequest updateRequest = new UpdateRequest("kim_index", "1");
    updateRequest.timeout("1s");
    User user = new User("KimTou", 21);
    updateRequest.doc(JSON.toJSONString(user),XContentType.JSON);
    UpdateResponse updateResponse = client.update(updateRequest, RequestOptions.DEFAULT);
    System.out.println(updateResponse.status());
}
  • 删除文档记录
/**
 * 删除文档记录
 */
@Test
void testDeleteDocument() throws IOException {
    DeleteRequest deleteRequest = new DeleteRequest("kim_index", "1");
    deleteRequest.timeout("1s");
    DeleteResponse deleteResponse = client.delete(deleteRequest, RequestOptions.DEFAULT);
    System.out.println(deleteResponse.status());
}
  • 批量导入数据
/**
 * 批量插入数据
 */
@Test
void testBulkRequest() throws IOException {
    BulkRequest bulkRequest = new BulkRequest();
    bulkRequest.timeout("10s");
    ArrayList<User> userList = new ArrayList<>();
    userList.add(new User("Kim1",20));
    userList.add(new User("Kim2",20));
    userList.add(new User("Kim3",20));
    userList.add(new User("KimTou1",20));
    userList.add(new User("KimTou2",20));
    userList.add(new User("KimTou3",20));
    //批处理请求
    for (int i = 0; i < userList.size(); i++) {
        //更新删除操作类似
        bulkRequest.add(
                new IndexRequest("kim_index")
                .id(""+(i+1))
                .source(JSON.toJSONString(userList.get(i)),XContentType.JSON));
    }
    BulkResponse bulkResponse = client.bulk(bulkRequest, RequestOptions.DEFAULT);
    System.out.println(bulkResponse.hasFailures());
}
  • 查询
/**
 * 查询
 */
@Test
void testSearch() throws IOException {
    //搜索请求
    SearchRequest searchRequest = new SearchRequest();
    //构建查询条件
    SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
    //查询条件,可以使用 QueryBuilders 工具类来实现
    //QueryBuilders.termQuery  精确查询
    //QueryBuilders.matchAllQuery  匹配所有
    TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("name", "KimTou1");
    //MatchAllQueryBuilder matchAllQueryBuilder = QueryBuilders.matchAllQuery();
    sourceBuilder.query(termQueryBuilder);
    //超时时间60s
    sourceBuilder.timeout(new TimeValue(60, TimeUnit.SECONDS));
    searchRequest.source(sourceBuilder);
    SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
    System.out.println(JSON.toJSONString(searchResponse.getHits()));
    System.out.println("====================================");
    for (SearchHit documentFields : searchResponse.getHits().getHits()) {
        System.out.println(documentFields.getSourceAsMap());
    }
}

项目实战

项目搭建

  • 模块选择:DevTools三个、Web、Thymeleaf、ElasticSearch
  • pom.xml中修改正确版本
//SpringBoot版本选择2.2.5
<version>2.2.5.RELEASE</version>

//ElasticSearch选择7.6.1
<properties>
        <java.version>1.8</java.version>
        <!--自己定义es版本依赖,保证和本地一致-->
        <elasticsearch.version>7.6.1</elasticsearch.version>
</properties>
  • pom.xml中添加fastjson依赖

  • 修改application.properties配置文件

server.port=9090
# 关闭Thymeleaf缓存
spring.thymeleaf.cache=false
  • 导入前端素材

  • 访问首页

@GetMapping({"/","/index"})
public String index(){
    return "index";
}

爬虫

导入jsoup依赖(解析网页)

<!--解析网页-->
<dependency>
    <groupId>org.jsoup</groupId>
    <artifactId>jsoup</artifactId>
    <version>1.13.1</version>
</dependency>

html

  • 测试
public static void main(String[] args) {
		//获取请求
        String url = "https://search.jd.com/Search?keyword=java";
        //解析网页(Jsoup返回的Document对象就是浏览器Document对象)
        Document document = Jsoup.parse(new URL(url), 30000);
        //所有能在javascript中使用的方法,这里都能用
        Element element = document.getElementById("J_goodsList");
        //获取所有的li元素
        Elements elements = element.getElementsByTag("li");
        //获取元素中的内容,这里的el就是每一个li标签
        for (Element el : elements) {
            /*京东网站使用了懒加载
            String img = el.getElementsByTag("img").eq(0).attr("src");*/
            String img = el.getElementsByTag("img").eq(0).attr("data-lazy-img");
            String price = el.getElementsByClass("p-price").eq(0).text();
            String title = el.getElementsByClass("p-name").eq(0).text();
            System.out.println("===============================================");
            System.out.println(img);
            System.out.println(price);
            System.out.println(title);
        }
}
  • 封装工具类
@Component
public class HtmlParseUtil {
    //测试
    //public static void main(String[] args) throws IOException {
    //    new HtmlParseUtil().parseJD("心理学").forEach(System.out::println);
    //}

    /**
     * 工具类
     */
    public List<Content> parseJD(String keyword) throws IOException {
        String url = "https://search.jd.com/Search?keyword="+keyword;
        Document document = Jsoup.parse(new URL(url), 30000);
        Element element = document.getElementById("J_goodsList");
        //获取所有的li元素
        Elements elements = element.getElementsByTag("li");
        ArrayList<Content> goodsList = new ArrayList<>();
        //获取元素中的内容,这里的el就是每一个li标签
        for (Element el : elements) {
            /*京东网站使用了懒加载
            String img = el.getElementsByTag("img").eq(0).attr("src");*/
            String img = el.getElementsByTag("img").eq(0).attr("data-lazy-img");
            String price = el.getElementsByClass("p-price").eq(0).text();
            String title = el.getElementsByClass("p-name").eq(0).text();
            Content content = new Content();
            content.setTitle(title);
            content.setPrice(price);
            content.setImg(img);
            goodsList.add(content);
        }
        return goodsList;
    }
}

业务编写

  1. 解析数据放入es索引中

  2. 获取这些数据,实现搜索功能

@Service
public class ContentService {

    @Autowired
    private RestHighLevelClient restHighLevelClient;

    /**
     * 1.解析数据放入es索引中
     */
    public Boolean parseContent(String keyword) throws IOException {
        List<Content> contents = new HtmlParseUtil().parseJD(keyword);
        BulkRequest bulkRequest = new BulkRequest();
        bulkRequest.timeout("2m");
        for (int i = 0; i < contents.size(); i++) {
            bulkRequest.add(
                    new IndexRequest("jd_goods")
                    .source(JSON.toJSONString(contents.get(i)), XContentType.JSON));
        }
        BulkResponse bulkResponse = restHighLevelClient.bulk(bulkRequest, RequestOptions.DEFAULT);
        return !bulkResponse.hasFailures();
    }

    /**
     * 2.获取这些数据,实现搜索功能
     */
    public List<Map<String,Object>> searchPage(String keyword,int pageNo,int pageSize) throws IOException {
        if(pageNo<=1){
            pageNo = 1;
        }

        //条件搜索
        SearchRequest searchRequest = new SearchRequest("jd_goods");
        SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();

        //分页
        sourceBuilder.from(pageNo);
        sourceBuilder.size(pageSize);

        //精确查询
        TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("title", keyword);
        sourceBuilder.query(termQueryBuilder);
        sourceBuilder.timeout(new TimeValue(60, TimeUnit.SECONDS));

        //执行搜索
        searchRequest.source(sourceBuilder);
        SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);

        ArrayList<Map<String,Object>> list = new ArrayList<>();
        //解析结果
        for (SearchHit document : searchResponse.getHits().getHits()) {
            list.add(document.getSourceAsMap());
        }
        return list;
    }

}
  • Controller层
@RestController
public class ContentController {

    @Autowired
    private ContentService contentService;

    @GetMapping("/parse/{keyword}")
    public Boolean parse(@PathVariable("keyword") String keyword) throws IOException {
        return contentService.parseContent(keyword);
    }

    @GetMapping("/search/{keyword}/{pageNo}/{pageSize}")
    public List<Map<String,Object>> search(@PathVariable("keyword") String keyword,
                                           @PathVariable("pageNo") int pageNo,
                                           @PathVariable("pageSize") int pageSize) throws IOException {
        return contentService.searchPage(keyword, pageNo, pageSize);
    }

}

前后端交互

  • 创建vue
C:\Users\MI\Desktop\vue>npm install vue
......

C:\Users\MI\Desktop\vue>npm install axios			//ajax
......
  • 导入这两个的js文件

  • index.html

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org">

<head>
    <meta charset="utf-8"/>
    <title>狂神说Java-ES仿京东实战</title>
    <link rel="stylesheet" th:href="@{/css/style.css}"/>
</head>

<body class="pg">
<div class="page" id="app">
    <div id="mallPage" class=" mallist tmall- page-not-market ">

        <!-- 头部搜索 -->
        <div id="header" class=" header-list-app">
            <div class="headerLayout">
                <div class="headerCon ">
                    <!-- Logo-->
                    <h1 id="mallLogo">
                        <img th:src="@{/images/jdlogo.png}" alt="">
                    </h1>

                    <div class="header-extra">

                        <!--搜索-->
                        <div id="mallSearch" class="mall-search">
                            <form name="searchTop" class="mallSearch-form clearfix">
                                <fieldset>
                                    <legend>天猫搜索</legend>
                                    <div class="mallSearch-input clearfix">
                                        <div class="s-combobox" id="s-combobox-685">
                                            <div class="s-combobox-input-wrap">
                                                <input  v-model="keyword" type="text" autocomplete="off" value="dd" id="mq"
                                                       class="s-combobox-input" aria-haspopup="true">
                                            </div>
                                        </div>
                                        <button type="submit" @click.prevent="searchKey" id="searchbtn">搜索</button>
                                    </div>
                                </fieldset>
                            </form>
                            <ul class="relKeyTop">
                                <li><a>狂神说Java</a></li>
                                <li><a>狂神说前端</a></li>
                                <li><a>狂神说Linux</a></li>
                                <li><a>狂神说大数据</a></li>
                                <li><a>狂神聊理财</a></li>
                            </ul>
                        </div>
                    </div>
                </div>
            </div>
        </div>

        <!-- 商品详情页面 -->
        <div id="content">
            <div class="main">
                <!-- 品牌分类 -->
                <form class="navAttrsForm">
                    <div class="attrs j_NavAttrs" style="display:block">
                        <div class="brandAttr j_nav_brand">
                            <div class="j_Brand attr">
                                <div class="attrKey">
                                    品牌
                                </div>
                                <div class="attrValues">
                                    <ul class="av-collapse row-2">
                                        <li><a href="#"> 狂神说 </a></li>
                                        <li><a href="#"> Java </a></li>
                                    </ul>
                                </div>
                            </div>
                        </div>
                    </div>
                </form>

                <!-- 排序规则 -->
                <div class="filter clearfix">
                    <a class="fSort fSort-cur">综合<i class="f-ico-arrow-d"></i></a>
                    <a class="fSort">人气<i class="f-ico-arrow-d"></i></a>
                    <a class="fSort">新品<i class="f-ico-arrow-d"></i></a>
                    <a class="fSort">销量<i class="f-ico-arrow-d"></i></a>
                    <a class="fSort">价格<i class="f-ico-triangle-mt"></i><i class="f-ico-triangle-mb"></i></a>
                </div>

                <!-- 商品详情 -->
                <div class="view grid-nosku">

                    <div class="product" v-for="result in results">
                        <div class="product-iWrap">
                            <!--商品封面-->
                            <div class="productImg-wrap">
                                <a class="productImg">
                                    <img :src="result.img">
                                </a>
                            </div>
                            <!--价格-->
                            <p class="productPrice">
                                <em>{{result.price}}</em>
                            </p>
                            <!--标题-->
                            <p class="productTitle">
                                <a v-html="result.title">  </a>
                            </p>
                            <!-- 店铺名 -->
                            <div class="productShop">
                                <span>店铺: 狂神说Java </span>
                            </div>
                            <!-- 成交信息 -->
                            <p class="productStatus">
                                <span>月成交<em>999笔</em></span>
                                <span>评价 <a>3</a></span>
                            </p>
                        </div>
                    </div>
                </div>
            </div>
        </div>
    </div>
</div>

<!--前端使用Vue,实现前后端分离-->
<!--<script type="text/javascript" src="https://unpkg.com/vue"></script>
<script src="https://unpkg.com/axios/dist/axios.min.js"></script>-->
<script type="text/javascript" th:src="@{/js/axios.min.js}"></script>
<script type="text/javascript" th:src="@{/js/vue.min.js}"></script>
<script>

    new Vue({
        el: '#app',
        data:{
            keyword:'',     //搜索关键字
            results:[]       //搜索结果
        },
        methods:{
            searchKey(){
                var keyword = this.keyword;
                console.log(keyword);
                //对接后端接口
                axios.get('search/'+keyword+"/1/10").then(response=>{
                    console.log(response);
                    this.results = response.data;    //绑定数据
                })
            }
        }
    })

</script>

</body>
</html>

关键字高亮

/**
 * 3.获取这些数据,实现搜索高亮功能
 */
public List<Map<String,Object>> searchPageHighlightBuilder(String keyword,int pageNo,int pageSize) throws IOException {
    if(pageNo<=1){
        pageNo = 1;
    }

    //条件搜索
    SearchRequest searchRequest = new SearchRequest("jd_goods");
    SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();

    //分页
    sourceBuilder.from(pageNo);
    sourceBuilder.size(pageSize);

    //精确查询
    TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("title", keyword);
    sourceBuilder.query(termQueryBuilder);
    sourceBuilder.timeout(new TimeValue(60, TimeUnit.SECONDS));

    //高亮
    HighlightBuilder highlightBuilder = new HighlightBuilder();
    highlightBuilder.field("title");
    //多个高亮显示
    highlightBuilder.requireFieldMatch(false);
    highlightBuilder.preTags("<span style='color:red'>");
    highlightBuilder.postTags("</span>");
    sourceBuilder.highlighter(highlightBuilder);

    //执行搜索
    searchRequest.source(sourceBuilder);
    SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);

    ArrayList<Map<String,Object>> list = new ArrayList<>();
    //解析结果
    for (SearchHit document : searchResponse.getHits().getHits()) {

        Map<String, HighlightField> highlightFields = document.getHighlightFields();
        HighlightField title = highlightFields.get("title");
        //原来的结果
        Map<String, Object> sourceAsMap = document.getSourceAsMap();
        //解析高亮的字段,将原来的字段替换为高亮的字段
        if(title!=null){
            Text[] fragments = title.fragments();
            String newTitle = "";
            for (Text text : fragments) {
                newTitle += text;
            }
            //替换为高亮的字段
            sourceAsMap.put("title",newTitle);
        }
        list.add(sourceAsMap);
    }
    return list;
}

  • 参考资料:

https://www.bilibili.com/video/BV17a4y1x7zq

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2021-10-08 11:51:37  更:2021-10-08 11:52:04 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/24 0:14:06-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码