IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> Flink的checkpoint怎么内部保证精准消费 -> 正文阅读

[大数据]Flink的checkpoint怎么内部保证精准消费

1 流计算中流的状态

1.1 数据状态

首先是流数据状态。在流计算过程中,我们需要处理事件窗口、时间乱序、多流关联等问题。解决这些问题,通常需要对部分流数据进行临时缓存,并在计算完成时再将这些临时缓存清理掉。因此,我们将这些临时保存的部分流数据称为“流数据状态”。

1.2 信息状态

在流计算过程中,我们会得到一些有用的业务信息,比如时间维度的聚合值、关联图谱的一度关联节点数、CEP 的有限状态机等,这些信息会在后续被继续使用,从而需要将它们保存下来。同时在之后的流计算过程中,这些信息还会被不断地查询和更新。因此,我们将这些分析所得并保存下来的业务信息称为“流信息状态”。

信息状态的存储,通常是依赖于数据库完成的。这有三方面的原因。

一是,“流信息状态”通常需要保存较长时间,数据量也不小,还需要频繁查询和更新,将它存放在数据库中,能方便地长期保存和增删查改。

二是,“流信息状态”存在“数据变冷”和“过期淘汰”的问题,使用数据库的“热数据缓存”和“TTL 机制”,能方便有效地解决这两个问题。

三是,“流信息状态”通常数据量会很大,单个存储节点往往是不够用的,选择合适的数据库能够方便地扩展为集群。

2. Flink的状态操作和无状态操作

  • 无状态

每一条输入对应一个输出,幂等,可重复操作。

  • 有状态

多个输入对应一个输出,非幂等,不可重复操作。

3. Flink的checkpoint的过程

  1. JobManager有一组件checkpoint coordinator向SourceTask 发送 CheckPointTrigger,SourceTask 会在数据流中安插 CheckPoint barrier。

img

  1. Source Task 自身做快照,并保存到状态后端。

640?wx_fmt=png

  1. SourceTask 将 barrier 跟数据流一块往下游发送。

640?wx_fmt=png

  1. 当下游的 Operator 实例接收到 CheckPointbarrier 后,对自身做快照。

640?wx_fmt=png

640?wx_fmt=png

上述图中,有 4 个带状态的 Operator 实例,相应的状态后端就可以想象成填 4 个格子。整个 CheckPoint 的过程可以当做 Operator 实例填自己格子的过程,Operator 实例将自身的状态写到状态后端中相应的格子,当所有的格子填满可以简单的认为一次完整的 CheckPoint 做完了。

总结整个 CheckPoint 执行过程如下:

  • JobManager 端的 CheckPointCoordinator 向所有 SourceTask 发送 CheckPointTrigger,Source Task 会在数据流中安插 CheckPoint barrier。

  • 当 task 收到所有的 barrier 后,向自己的下游继续传递 barrier,然后自身执行快照,并将自己的状态异步写入到持久化存储中。

  • 增量 CheckPoint 只是把最新的一部分更新写入到 外部存储;

  • 为了下游尽快做 CheckPoint,所以会先发送 barrier 到下游,自身再同步进行快照;

  • 当 task 完成备份后,会将备份数据的地址(state handle)通知给 JobManager 的 CheckPointCoordinator。

  • 如果 CheckPoint 的持续时长超过了 CheckPoint 设定的超时时间,CheckPointCoordinator 还没有收集完所有的 State Handle,CheckPointCoordinator 就会认为本次 CheckPoint 失败,会把这次 CheckPoint 产生的所有状态数据全部删除。

  • 最后 CheckPointCoordinator 会把整个 StateHandle 封装成 completed CheckPoint Meta,写入到 hdfs。

4. 精准一次消费和至少一次消费

// 最少一次
CheckpointingMode.AT_LEAST_ONCE
// 精确一次
CheckpointingMode.EXACTLY_ONCE

4.1 barrier 对齐

img

当还有其他输入流的 barrier 还没有到达时,会把已到达的 barrier 之后的数据 1、2、3 搁置在缓冲区,等待其他流的 barrier 到达后才能处理。

在Flink的检查点机制中,屏障(barrier)是划分快照(状态)的边界。在启用exactly once语义的条件下,当一个算子有多个输入流时,需要等待所有输入流中当前检查点N的屏障都到达其输入缓冲区,才能安全地触发检查点。屏障对齐不仅保证了状态的准确性,还巧妙地消去了原生C-L算法中记录输入流状态的步骤(之前说过,即使作业执行计划是有环图,也只需要记录回边流的状态),十分轻量级。

**存在的问题:**效率低,影响反压

屏障对齐是阻塞式的,在作业出现反压时可能会成为不定时炸弹。我们知道,检查点屏障是从Source端产生并源源不断地向下游流动的。如果作业出现反压(哪怕整个DAG中的一条链路反压),数据流动的速度减慢,屏障到达下游算子的延迟就会变大,进而影响到检查点完成的延时(变大甚至超时失败)。如果反压长久不能得到解决,快照数据与实际数据之间的差距就越来越明显,一旦作业failover,势必丢失较多的处理进度。另一方面,作业恢复后需要重新处理的数据又会积压,加重反压,造成恶性循环。

4.2 barrier不对齐

不对齐就是指当还有其他流的 barrier 还没到达时,为了不影响性能,也不用理会,直接处理 barrier 之后的数据。等到所有流的 barrier 的都到达后,就可以对该 Operator 做 CheckPoint 了。

**存在的问题:**非精确一次消费,是最少一次

假如我们从chk-100恢复。CheckPoint 的目的就是为了保存快照,如果不对齐,那么在 chk-100 快照之前,已经处理了一些 chk-100 对应的 offset 之后的数据,当程序从 chk-100 恢复任务时,chk-100 对应的 offset 之后的数据还会被处理一次,所以就出现了重复消费。

4.3 非对齐检查点

// enables the experimental unaligned checkpoints
env.getCheckpointConfig().enableUnalignedCheckpoints();

Flink 1.11版本引入的新功能

img

简单解说:

a) 当算子的所有输入流中的第一个屏障到达算子的输入缓冲区时,立即将这个屏障发往下游(输出缓冲区)。

b) 由于第一个屏障没有被阻塞,它的步调会比较快,超过一部分缓冲区中的数据。算子会标记两部分数据:一是屏障首先到达的那条流中被超过的数据,二是其他流中位于当前检查点屏障之前的所有数据(当然也包括进入了输入缓冲区的数据)。

既然不同检查点的数据都混在一起了,非对齐检查点还能保证exactly once语义吗?

答案是肯定的。当任务从非对齐检查点恢复时,除了对齐检查点也会涉及到的Source端重放和算子的计算状态恢复之外,未对齐的流数据也会被恢复到各个链路,三者合并起来就是能够保证exactly once的完整现场了。

非对齐检查点目前仍然作为试验性的功能存在,并且它也不是十全十美的(所谓优秀的implementation往往都要考虑trade-off),主要缺点有二:

需要额外保存数据流的现场,总的状态大小可能会有比较明显的膨胀(文档中说可能会达到a couple of GB per task),磁盘压力大。当集群本身就具有I/O bound的特点时,该缺点的影响更明显。

从状态恢复时也需要额外恢复数据流的现场,作业重新拉起的耗时可能会很长。特别地,如果第一次恢复失败,有可能触发death spiral(死亡螺旋)使得作业永远无法恢复。

所以,官方当前推荐仅将它应用于那些容易产生反压且I/O压力较小(比如原始状态不太大)的作业中。

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2021-10-13 11:30:47  更:2021-10-13 11:33:03 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/18 8:28:30-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码