IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> mysql检索数据 -> 正文阅读

[大数据]mysql检索数据

mysql检索数据

1. SELECT检索单列,多列,所有列

单列

SELECT prod_name FROM products;

输出:

+----------------+
| prod_name      |
+----------------+
| .5 ton anvil   |
| 1 ton anvil    |
| 2 ton anvil    |
| Detonator      |
| Bird seed      |
| Carrots        |
| Fuses          |
| JetPack 1000   |
| JetPack 2000   |
| Oil can        |
| Safe           |
| Sling          |
| TNT (1 stick)  |
| TNT (5 sticks) |
+----------------+
14 rows in set (0.00 sec)

多列

SELECT prod_id,prod_name,prod_price FROM products;

输出:

+---------+----------------+------------+
| prod_id | prod_name      | prod_price |
+---------+----------------+------------+
| ANV01   | .5 ton anvil   |       5.99 |
| ANV02   | 1 ton anvil    |       9.99 |
| ANV03   | 2 ton anvil    |      14.99 |
| DTNTR   | Detonator      |      13.00 |
| FB      | Bird seed      |      10.00 |
| FC      | Carrots        |       2.50 |
| FU1     | Fuses          |       3.42 |
| JP1000  | JetPack 1000   |      35.00 |
| JP2000  | JetPack 2000   |      55.00 |
| OL1     | Oil can        |       8.99 |
| SAFE    | Safe           |      50.00 |
| SLING   | Sling          |       4.49 |
| TNT1    | TNT (1 stick)  |       2.50 |
| TNT2    | TNT (5 sticks) |      10.00 |
+---------+----------------+------------+
14 rows in set (0.01 sec)

所有列

SELECT * FROM products;

输出:

+---------+---------+----------------+------------+----------------------------------------------------------------+
| prod_id | vend_id | prod_name      | prod_price | prod_desc                                                      |
+---------+---------+----------------+------------+----------------------------------------------------------------+
| ANV01   |    1001 | .5 ton anvil   |       5.99 | .5 ton anvil, black, complete with handy hook                  |
| ANV02   |    1001 | 1 ton anvil    |       9.99 | 1 ton anvil, black, complete with handy hook and carrying case |
| ANV03   |    1001 | 2 ton anvil    |      14.99 | 2 ton anvil, black, complete with handy hook and carrying case |
| DTNTR   |    1003 | Detonator      |      13.00 | Detonator (plunger powered), fuses not included                |
| FB      |    1003 | Bird seed      |      10.00 | Large bag (suitable for road runners)                          |
| FC      |    1003 | Carrots        |       2.50 | Carrots (rabbit hunting season only)                           |
| FU1     |    1002 | Fuses          |       3.42 | 1 dozen, extra long                                            |
| JP1000  |    1005 | JetPack 1000   |      35.00 | JetPack 1000, intended for single use                          |
| JP2000  |    1005 | JetPack 2000   |      55.00 | JetPack 2000, multi-use                                        |
| OL1     |    1002 | Oil can        |       8.99 | Oil can, red                                                   |
| SAFE    |    1003 | Safe           |      50.00 | Safe with combination lock                                     |
| SLING   |    1003 | Sling          |       4.49 | Sling, one size fits all                                       |
| TNT1    |    1003 | TNT (1 stick)  |       2.50 | TNT, red, single stick                                         |
| TNT2    |    1003 | TNT (5 sticks) |      10.00 | TNT, red, pack of 10 sticks                                    |
+---------+---------+----------------+------------+----------------------------------------------------------------+
14 rows in set (0.00 sec)

一般,除非你确实需要表中的每个列,否则最好别使用*通配符。虽然使用通配符可能会使你自己省事,不用明确列出所需列,但检索不需要的列通常会降低检索和应用程序的性能。

2. 使用DISTINCT去重

SELECT vend_id FROM products;

输出:

+---------+
| vend_id |
+---------+
|    1001 |
|    1001 |
|    1001 |
|    1002 |
|    1002 |
|    1003 |
|    1003 |
|    1003 |
|    1003 |
|    1003 |
|    1003 |
|    1003 |
|    1005 |
|    1005 |
+---------+
14 rows in set (0.00 sec)

使用DISTINCT关键字:

SELECT DISTINCT vend_id FROM products;

输出:

+---------+
| vend_id |
+---------+
|    1001 |
|    1002 |
|    1003 |
|    1005 |
+---------+
4 rows in set (0.00 sec)

distinct不仅对前置它的列vend_id起作用,同时也作用于prod_price,两列值有重复,才去重。

select distinct vend_id,prod_price from products;

输出:

+---------+------------+
| vend_id | prod_price |
+---------+------------+
|    1001 |       5.99 |
|    1001 |       9.99 |
|    1001 |      14.99 |
|    1003 |      13.00 |
|    1003 |      10.00 |
|    1003 |       2.50 |
|    1002 |       3.42 |
|    1005 |      35.00 |
|    1005 |      55.00 |
|    1002 |       8.99 |
|    1003 |      50.00 |
|    1003 |       4.49 |
+---------+------------+
12 rows in set (0.01 sec)

3. 使用LIMIT检索部分行

检索前5行

SELECT prod_name FROM products LIMIT 5;

输出:

+--------------+
| prod_name    |
+--------------+
| .5 ton anvil |
| 1 ton anvil  |
| 2 ton anvil  |
| Detonator    |
| Bird seed    |
+--------------+
5 rows in set (0.00 sec)

检索指定位置开始的5行

SELECT prod_name FROM products LIMIT 5,5;

LIMIT 5, 5指示MySQL返回从行5开始的5行。第一个数为开始位置,第二个数为要检索的行数

输出:

+--------------+
| prod_name    |
+--------------+
| Carrots      |
| Fuses        |
| JetPack 1000 |
| JetPack 2000 |
| Oil can      |
+--------------+
5 rows in set (0.00 sec)

注意

检索出来的第一行为行0而不是行1。因此,LIMIT 1, 1,将检索出第二行而不是第一行。
LIMIT中指定要检索的行数为检索的最大行数。如果没有足够的行(例如,给出LIMIT 10, 5,但只有13行),MySQL将只返回它能返回的那么多行。

等价写法

select prod_name from products limit 4 OFFSET 3; #从第 3 行开始,检索 4 行
select prod_name from products limit 3,4; #,同上,从第 3 行开始,检索 4 

4. 使用完全限定的表名

SELECT products.prod_name FROM crashcourse.products;
# select products.prod_name from crashcourse.products;

输出:

+----------------+
| prod_name      |
+----------------+
| .5 ton anvil   |
| 1 ton anvil    |
| 2 ton anvil    |
| Detonator      |
| Bird seed      |
| Carrots        |
| Fuses          |
| JetPack 1000   |
| JetPack 2000   |
| Oil can        |
| Safe           |
| Sling          |
| TNT (1 stick)  |
| TNT (5 sticks) |
+----------------+
14 rows in set (0.00 sec)

populate.sql:(用作更新表单内容)

##########################
# Populate customers table
##########################
INSERT INTO customers(cust_id, cust_name, cust_address, cust_city, cust_state, cust_zip, cust_country, cust_contact, cust_email)
VALUES(10001, 'Coyote Inc.', '200 Maple Lane', 'Detroit', 'MI', '44444', 'USA', 'Y Lee', 'ylee@coyote.com');
INSERT INTO customers(cust_id, cust_name, cust_address, cust_city, cust_state, cust_zip, cust_country, cust_contact)
VALUES(10002, 'Mouse House', '333 Fromage Lane', 'Columbus', 'OH', '43333', 'USA', 'Jerry Mouse');
INSERT INTO customers(cust_id, cust_name, cust_address, cust_city, cust_state, cust_zip, cust_country, cust_contact, cust_email)
VALUES(10003, 'Wascals', '1 Sunny Place', 'Muncie', 'IN', '42222', 'USA', 'Jim Jones', 'rabbit@wascally.com');
INSERT INTO customers(cust_id, cust_name, cust_address, cust_city, cust_state, cust_zip, cust_country, cust_contact, cust_email)
VALUES(10004, 'Yosemite Place', '829 Riverside Drive', 'Phoenix', 'AZ', '88888', 'USA', 'Y Sam', 'sam@yosemite.com');
INSERT INTO customers(cust_id, cust_name, cust_address, cust_city, cust_state, cust_zip, cust_country, cust_contact)
VALUES(10005, 'E Fudd', '4545 53rd Street', 'Chicago', 'IL', '54545', 'USA', 'E Fudd');


########################
# Populate vendors table
########################
INSERT INTO vendors(vend_id, vend_name, vend_address, vend_city, vend_state, vend_zip, vend_country)
VALUES(1001,'Anvils R Us','123 Main Street','Southfield','MI','48075', 'USA');
INSERT INTO vendors(vend_id, vend_name, vend_address, vend_city, vend_state, vend_zip, vend_country)
VALUES(1002,'LT Supplies','500 Park Street','Anytown','OH','44333', 'USA');
INSERT INTO vendors(vend_id, vend_name, vend_address, vend_city, vend_state, vend_zip, vend_country)
VALUES(1003,'ACME','555 High Street','Los Angeles','CA','90046', 'USA');
INSERT INTO vendors(vend_id, vend_name, vend_address, vend_city, vend_state, vend_zip, vend_country)
VALUES(1004,'Furball Inc.','1000 5th Avenue','New York','NY','11111', 'USA');
INSERT INTO vendors(vend_id, vend_name, vend_address, vend_city, vend_state, vend_zip, vend_country)
VALUES(1005,'Jet Set','42 Galaxy Road','London', NULL,'N16 6PS', 'England');
INSERT INTO vendors(vend_id, vend_name, vend_address, vend_city, vend_state, vend_zip, vend_country)
VALUES(1006,'Jouets Et Ours','1 Rue Amusement','Paris', NULL,'45678', 'France');


#########################
# Populate products table
#########################
INSERT INTO products(prod_id, vend_id, prod_name, prod_price, prod_desc)
VALUES('ANV01', 1001, '.5 ton anvil', 5.99, '.5 ton anvil, black, complete with handy hook');
INSERT INTO products(prod_id, vend_id, prod_name, prod_price, prod_desc)
VALUES('ANV02', 1001, '1 ton anvil', 9.99, '1 ton anvil, black, complete with handy hook and carrying case');
INSERT INTO products(prod_id, vend_id, prod_name, prod_price, prod_desc)
VALUES('ANV03', 1001, '2 ton anvil', 14.99, '2 ton anvil, black, complete with handy hook and carrying case');
INSERT INTO products(prod_id, vend_id, prod_name, prod_price, prod_desc)
VALUES('OL1', 1002, 'Oil can', 8.99, 'Oil can, red');
INSERT INTO products(prod_id, vend_id, prod_name, prod_price, prod_desc)
VALUES('FU1', 1002, 'Fuses', 3.42, '1 dozen, extra long');
INSERT INTO products(prod_id, vend_id, prod_name, prod_price, prod_desc)
VALUES('SLING', 1003, 'Sling', 4.49, 'Sling, one size fits all');
INSERT INTO products(prod_id, vend_id, prod_name, prod_price, prod_desc)
VALUES('TNT1', 1003, 'TNT (1 stick)', 2.50, 'TNT, red, single stick');
INSERT INTO products(prod_id, vend_id, prod_name, prod_price, prod_desc)
VALUES('TNT2', 1003, 'TNT (5 sticks)', 10, 'TNT, red, pack of 10 sticks');
INSERT INTO products(prod_id, vend_id, prod_name, prod_price, prod_desc)
VALUES('FB', 1003, 'Bird seed', 10, 'Large bag (suitable for road runners)');
INSERT INTO products(prod_id, vend_id, prod_name, prod_price, prod_desc)
VALUES('FC', 1003, 'Carrots', 2.50, 'Carrots (rabbit hunting season only)');
INSERT INTO products(prod_id, vend_id, prod_name, prod_price, prod_desc)
VALUES('SAFE', 1003, 'Safe', 50, 'Safe with combination lock');
INSERT INTO products(prod_id, vend_id, prod_name, prod_price, prod_desc)
VALUES('DTNTR', 1003, 'Detonator', 13, 'Detonator (plunger powered), fuses not included');
INSERT INTO products(prod_id, vend_id, prod_name, prod_price, prod_desc)
VALUES('JP1000', 1005, 'JetPack 1000', 35, 'JetPack 1000, intended for single use');
INSERT INTO products(prod_id, vend_id, prod_name, prod_price, prod_desc)
VALUES('JP2000', 1005, 'JetPack 2000', 55, 'JetPack 2000, multi-use');



#######################
# Populate orders table
#######################
INSERT INTO orders(order_num, order_date, cust_id)
VALUES(20005, '2005-09-01', 10001);
INSERT INTO orders(order_num, order_date, cust_id)
VALUES(20006, '2005-09-12', 10003);
INSERT INTO orders(order_num, order_date, cust_id)
VALUES(20007, '2005-09-30', 10004);
INSERT INTO orders(order_num, order_date, cust_id)
VALUES(20008, '2005-10-03', 10005);
INSERT INTO orders(order_num, order_date, cust_id)
VALUES(20009, '2005-10-08', 10001);


###########################
# Populate orderitems table
###########################
INSERT INTO orderitems(order_num, order_item, prod_id, quantity, item_price)
VALUES(20005, 1, 'ANV01', 10, 5.99);
INSERT INTO orderitems(order_num, order_item, prod_id, quantity, item_price)
VALUES(20005, 2, 'ANV02', 3, 9.99);
INSERT INTO orderitems(order_num, order_item, prod_id, quantity, item_price)
VALUES(20005, 3, 'TNT2', 5, 10);
INSERT INTO orderitems(order_num, order_item, prod_id, quantity, item_price)
VALUES(20005, 4, 'FB', 1, 10);
INSERT INTO orderitems(order_num, order_item, prod_id, quantity, item_price)
VALUES(20006, 1, 'JP2000', 1, 55);
INSERT INTO orderitems(order_num, order_item, prod_id, quantity, item_price)
VALUES(20007, 1, 'TNT2', 100, 10);
INSERT INTO orderitems(order_num, order_item, prod_id, quantity, item_price)
VALUES(20008, 1, 'FC', 50, 2.50);
INSERT INTO orderitems(order_num, order_item, prod_id, quantity, item_price)
VALUES(20009, 1, 'FB', 1, 10);
INSERT INTO orderitems(order_num, order_item, prod_id, quantity, item_price)
VALUES(20009, 2, 'OL1', 1, 8.99);
INSERT INTO orderitems(order_num, order_item, prod_id, quantity, item_price)
VALUES(20009, 3, 'SLING', 1, 4.49);
INSERT INTO orderitems(order_num, order_item, prod_id, quantity, item_price)
VALUES(20009, 4, 'ANV03', 1, 14.99);

#############################
# Populate productnotes table
#############################
INSERT INTO productnotes(note_id, prod_id, note_date, note_text)
VALUES(101, 'TNT2', '2005-08-17',
'Customer complaint:
Sticks not individually wrapped, too easy to mistakenly detonate all at once.
Recommend individual wrapping.'
);
INSERT INTO productnotes(note_id, prod_id, note_date, note_text)
VALUES(102, 'OL1', '2005-08-18',
'Can shipped full, refills not available.
Need to order new can if refill needed.'
);
INSERT INTO productnotes(note_id, prod_id, note_date, note_text)
VALUES(103, 'SAFE', '2005-08-18',
'Safe is combination locked, combination not provided with safe.
This is rarely a problem as safes are typically blown up or dropped by customers.'
);
INSERT INTO productnotes(note_id, prod_id, note_date, note_text)
VALUES(104, 'FC', '2005-08-19',
'Quantity varies, sold by the sack load.
All guaranteed to be bright and orange, and suitable for use as rabbit bait.'
);
INSERT INTO productnotes(note_id, prod_id, note_date, note_text)
VALUES(105, 'TNT2', '2005-08-20',
'Included fuses are short and have been known to detonate too quickly for some customers.
Longer fuses are available (item FU1) and should be recommended.'
);
INSERT INTO productnotes(note_id, prod_id, note_date, note_text)
VALUES(106, 'TNT2', '2005-08-22',
'Matches not included, recommend purchase of matches or detonator (item DTNTR).'
);
INSERT INTO productnotes(note_id, prod_id, note_date, note_text)
VALUES(107, 'SAFE', '2005-08-23',
'Please note that no returns will be accepted if safe opened using explosives.'
);
INSERT INTO productnotes(note_id, prod_id, note_date, note_text)
VALUES(108, 'ANV01', '2005-08-25',
'Multiple customer returns, anvils failing to drop fast enough or falling backwards on purchaser. Recommend that customer considers using heavier anvils.'
);
INSERT INTO productnotes(note_id, prod_id, note_date, note_text)
VALUES(109, 'ANV03', '2005-09-01',
'Item is extremely heavy. Designed for dropping, not recommended for use with slings, ropes, pulleys, or tightropes.'
);
INSERT INTO productnotes(note_id, prod_id, note_date, note_text)
VALUES(110, 'FC', '2005-09-01',
'Customer complaint: rabbit has been able to detect trap, food apparently less effective now.'
);
INSERT INTO productnotes(note_id, prod_id, note_date, note_text)
VALUES(111, 'SLING', '2005-09-02',
'Shipped unassembled, requires common tools (including oversized hammer).'
);
INSERT INTO productnotes(note_id, prod_id, note_date, note_text)
VALUES(112, 'SAFE', '2005-09-02',
'Customer complaint:
Circular hole in safe floor can apparently be easily cut with handsaw.'
);
INSERT INTO productnotes(note_id, prod_id, note_date, note_text)
VALUES(113, 'ANV01', '2005-09-05',
'Customer complaint:
Not heavy enough to generate flying stars around head of victim. If being purchased for dropping, recommend ANV02 or ANV03 instead.'
);
INSERT INTO productnotes(note_id, prod_id, note_date, note_text)
VALUES(114, 'SAFE', '2005-09-07',
'Call from individual trapped in safe plummeting to the ground, suggests an escape hatch be added.
Comment forwarded to vendor.'
);
  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2021-10-17 12:03:34  更:2021-10-17 12:04:01 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/18 6:06:11-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码