IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> 哈希冲突 | 数据倾斜 | SQL去重 -> 正文阅读

[大数据]哈希冲突 | 数据倾斜 | SQL去重

哈希冲突?? ? ?解决哈希冲突的常用方法分析 - 云+社区 - 腾讯云

哈希冲突:由于哈希算法被计算的数据是无限的,而计算后的结果范围有限,因此总会存在不同的数据经过计算后得到的值相同,这就是哈希冲突

解决哈希冲突的方法

一般有:开放定址法、链地址法(拉链法)、再哈希法、建立公共溢出区等方法。

开放定址法:从发生冲突的那个单元起,按照一定的次序,从哈希表中找到一个空闲的单元。然后把发生冲突的元素存入到该单元的一种方法。开放定址法需要的表长度要大于等于所需要存放的元素。

链地址法(拉链法):链接地址法的思路是将哈希值相同的元素构成一个同义词的单链表,并将单链表的头指针存放在哈希表的第i个单元中,查找、插入和删除主要在同义词链表中进行。链表法适用于经常进行插入和删除的情况。

再哈希法?就是同时构造多个不同的哈希函数: Hi = RHi(key) i= 1,2,3 … k; 当H1 = RH1(key) 发生冲突时,再用H2 = RH2(key) 进行计算,直到冲突不再产生,这种方法不易产生聚集,但是增加了计算时间。

建立公共溢出区:将哈希表分为公共表和溢出表,当溢出发生时,将所有溢出数据统一放到溢出区。

****************************************************************************************************************************************************************************************************************************

数据倾斜

数据倾斜在MapReduce计算框架中经常发生。 通俗理解,该现象指的是在整个计算过程中,大量相同的key被分配到了同一个任务上,造成“一个人累死、其他人闲死”的状况,这违背了分布式计算的初衷,使得整体的执行效率十分低下。

在计算数据的时候,数据的分散度不够,导致大量的数据集中到了一台或者几台机器上计算,这些数据的计算速度远远低于平均计算速度,导致整个计算过程过慢。

数据倾斜会发生在数据开发的各个环节中,比如:

用Hive算数据的时候reduce阶段卡在99.99%
用SparkStreaming做实时算法时候,一直会有executor出现OOM的错误,但是其余的executor内存使用率却很低。
数据倾斜有一个关键因素是数据量大,可以达到千亿级。

Hadoop中的数据倾斜

Hadoop中的数据倾斜主要表现在reduce阶段卡在99.99%,一直99.99%不能结束。
这里如果详细的看日志或者和监控界面的话会发现:

有一个多几个reduce卡住
各种container报错OOM(内存溢出(Out Of Memory,简称OOM))
读写的数据量极大,至少远远超过其它正常的reduce
伴随着数据倾斜,会出现任务被kill等各种诡异的表现。

经验:?Hive的数据倾斜,一般都发生在Sql中Group和On上,而且和数据逻辑绑定比较深。

Spark中的数据倾斜

Spark中的数据倾斜也很常见,这里包括Spark Streaming和Spark Sql,表现主要有下面几种:

Executor lost,OOM,Shuffle过程出错
Driver OOM
单个Executor执行时间特别久,整体任务卡在某个阶段不能结束
正常运行的任务突然失败
补充一下,在Spark streaming程序中,数据倾斜更容易出现,特别是在程序中包含一些类似sql的join、group这种操作的时候。 因为Spark Streaming程序在运行的时候,我们一般不会分配特别多的内存,因此一旦在这个过程中出现一些数据倾斜,就十分容易造成OOM。

数据倾斜的原理

1、数据倾斜产生的原因
? ? ? ? 我们以Spark和Hive的使用场景为例。他们在做数据运算的时候会设计到,count distinct、group by、join等操作,这些都会触发Shuffle动作,一旦触发,所有相同key的值就会拉到一个或几个节点上,就容易发生单点问题。

2、万恶的shuffle
? ? ? ? Shuffle是一个能产生奇迹的地方,不管是在Spark还是Hadoop中,它们的作用都是至关重要的。那么在Shuffle如何产生了数据倾斜?


??大部分数据倾斜的原理就类似于下图,很明了,因为数据分布不均匀,导致大量的数据分配到了一个节点。

从业务计角度来理解数据倾斜

数据往往和业务是强相关的,业务的场景直接影响到了数据的分布。再举一个例子,比如就说订单场景吧,我们在某一天在北京和上海两个城市多了强力的推广,结果可能是这两个城市的订单量增长了10000%,其余城市的数据量不变。然后我们要统计不同城市的订单情况,这样,一做group操作,可能直接就数据倾斜了。

如何解决
解决数据倾斜有这几个思路:
? ? ? ? 1.业务逻辑,我们从业务逻辑的层面上来优化数据倾斜,比如上面的例子,我们单独对这两个城市来做count,最后和其它城市做整合。
? ? ? ? 2.程序层面,比如说在Hive中,经常遇到count(distinct)操作,这样会导致最终只有一个reduce,我们可以先group 再在外面包一层count,就可以了。
? ? ? ? 3.调参方面,Hadoop和Spark都自带了很多的参数和机制来调节数据倾斜,合理利用它们就能解决大部分问题。

从业务和数据上解决数据倾斜

  • 有损的方法:
    ????????????找到异常数据,比如ip为0的数据,过滤掉
  • 无损的方法:
    ????????????对分布不均匀的数据,单独计算
    ????????????先对key做一层hash,先将数据打散让它的并行度变大,再汇集
    ?数据预处理

Hadoop平台的优化方法

? ? ? ? 1.mapjoin方式
? ? ? ? 2.count distinct的操作,先转成group,再count
? ? ? ? 3.hive.groupby.skewindata=true
? ? ? ? 4.left semi jioin的使用
? ? ? ? 5.设置map端输出、中间结果压缩。(不完全是解决数据倾斜的问题,但是减少了IO读写和网络传输,能提高很多效率)

Spark平台的优化方法

??????1.mapjoin方式
??????2.设置rdd压缩
??????3.合理设置driver的内存
??????4.Spark Sql中的优化和Hive类似,可以参考Hive

mapjoin:

MapJoin是Hive的一种优化操作,其适用于小表JOIN大表的场景,由于表的JOIN操作是在Map端且在内存进行的,所以其并不需要启动Reduce任务也就不需要经过shuffle阶段,从而能在一定程度上节省资源提高JOIN效率.

?mapjoin?在Map阶段执行表连接,而非等到Reduce阶段才执行表连接,可以缩短大量数据传输时间,提升系统资源利用率,从而起到优化作业的作用。?

Spark内存超出怎么解决??spark 内存溢出处理 - 青紫天涯 - 博客园?(待读)

Spark中的OOM问题不外乎以下两种情况

  • map执行中内存溢出
  • shuffle后内存溢出

map执行中内存溢出代表了所有map类型的操作。包括:flatMap,filter,mapPatitions等。
shuffle后内存溢出的shuffle操作包括join,reduceByKey,repartition等操作。

Spark RDD??Spark学习之路 (三)Spark之RDD - 扎心了,老铁 - 博客园?(待读)

RDD(Resilient Distributed Dataset)叫做弹性分布式数据集是Spark中最基本的数据抽象,它代表一个不可变、可分区、里面的元素可并行计算的集合。RDD具有数据流模型的特点:自动容错、位置感知性调度和可伸缩性。RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度。

****************************************************************************************************************************************************************************************************************************

SQL去重

distinct | group by | 窗口函数row_number


?

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2021-10-17 12:03:34  更:2021-10-17 12:04:40 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/18 6:20:37-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码