IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> Elasticsearch 实现POI检索 -> 正文阅读

[大数据]Elasticsearch 实现POI检索

前言:先说下需求,我们直接爬取高德地图坐标入库,然后定时器或者手动执行初始化Elasticsearch数据,爬取方法见爬取高德坐标

一、首先我们初始化Elasticsearch数据

1、创建索引、设置setting 登录Elasticsearch Head

{
	"settings": {
		"number_of_shards": 5,
		"number_of_replicas": 1,
		"analysis": {
			"analyzer": {
				"ik_pinyin": {
					"type": "custom",
					"tokenizer": "my_pinyin"
				},
				"ik_smart_pinyin": {
					"type": "custom",
					"tokenizer": "ik_smart",
					"filter": "my_pinyin"
				}
			},
			"tokenizer": {
				"my_pinyin": {
					"type": "pinyin",
					"keep_first_letter": true,
					"keep_full_pinyin": false,
					"keep_joined_full_pinyin": true,
					"remove_duplicated_term": true,
					"keep_original": true
				}
			},
			"filter": {
				"my_pinyin": {
					"type": "pinyin",
					"keep_first_letter": true,
					"keep_full_pinyin": false,
					"keep_joined_full_pinyin": true,
					"remove_duplicated_term": true,
					"keep_original": true
				}
			}
		}
	}
}

?我们对上面的setting解释下,由于我们要实现中文分词检索,和拼音检索,需要下载分词插件见IK分词插件、拼音插件安装

自定义分词解析器ik_pinyin、ik_smart_pinyin有人会问为啥定义两个拼音分词解析器,这个是为了实现我们输入搜索??jlh 或者pcs可以搜索到九龙湖派出所,ik_smart_pinyin是把词根解析成每个分词然后转成拼音存储起来,my_pinyin是过滤器,就是把分词二次处理,有些参数可以参考??拼音分词插件使用,里面说的很详细。

2、说完自定义分词器就要说到字段映射了,先看代码? ?像上面一样请求 PUT /location/_mapping

{
	"properties": {
		"address": {
			"type": "text",
			"fields": {
				"ik_pinyin_field": {
					"type": "text",
					"analyzer": "ik_pinyin",
					"search_analyzer": "keyword"
				},
				"ik_word_field": {
					"type": "text",
					"analyzer": "ik_max_word"
				},
				"ik_smart_pinyin_field": {
					"type": "text",
					"analyzer": "ik_smart_pinyin",
					"search_analyzer": "keyword"
				}
			}
		},
		"code": {
			"type": "keyword"
		},
		"categoriesCode": {
			"type": "keyword"
		},
		"name": {
			"type": "text",
			"fields": {
				"ik_pinyin_field": {
					"type": "text",
					"analyzer": "ik_pinyin",
					"search_analyzer": "keyword"
				},
				"ik_word_field": {
					"type": "text",
					"analyzer": "ik_max_word"
				},
				"ik_smart_pinyin_field": {
					"type": "text",
					"analyzer": "ik_smart_pinyin",
					"search_analyzer": "keyword"
				}
			}
		},
		"_class": {
			"type": "text",
			"fields": {
				"keyword": {
					"ignore_above": 256,
					"type": "keyword"
				}
			}
		},
		"id": {
			"type": "text",
			"fields": {
				"keyword": {
					"ignore_above": 256,
					"type": "keyword"
				}
			}
		},
		"geoPoint": {
			"type": "geo_point"
		},
		"order": {
			"type": "integer"
		}
	}
}

? ?字段有点多,实现的功能就是地址可地点名称可以通过分词搜索到,坐标要用geo_point类型、name,可以定义多个fields,可以看做是别名,拼音字段最好查询分词用keyword,这样就不会被分词,导致查询准确性不高,具体代码怎么写在下面

二、java代码实现

首先新增实体类由于设置过映射就不需要在字段上面加了,之前在字段上面添加坐标属性注解不生效。导致坐标系的类都不能用 也是挺坑的。

@Data
@Document(indexName = "location", shards = 5)
public class GeoPointData implements Serializable {

    /**
     * ID主键
     */
    @Id
    private String id;
    /**
     * 地址名称
     */
    private String name;
    /**
     * 地址
     */
    private String address;

    /**
     * 地址大类型
     */
    private String[] categoriesCode;
    /**
     * 地址小类型
     */
    private String[] code;

    /**
     * 位置坐标
     */
    private GeoPoint geoPoint;

    /**
     * 默认推荐排序
     */
    private Integer order;
}

根据关键字查询结果

/**
     * 关键字查询
     * @param operations
     * @param keyword
     * @param pageNum
     * @param pageSize
     * @return
     */
    public static  SearchHits<GeoPointData>  queryLocationByKeyword(ElasticsearchOperations operations, String keyword, int pageNum, int pageSize){
        //分页参数
        pageNum =  (pageNum < 1 ? 1:pageNum);
        NativeSearchQueryBuilder nativeSearchQueryBuilder = new NativeSearchQueryBuilder();
        nativeSearchQueryBuilder.withPageable(PageRequest.of(pageNum -1 ,pageSize));
        // 查询条件
        BoolQueryBuilder boolQueryBuilder = getQueryNameAndAddressBool(keyword);
        nativeSearchQueryBuilder.withQuery(boolQueryBuilder);
        //返回
        SearchHits<GeoPointData> search = operations.search(nativeSearchQueryBuilder.build(), GeoPointData.class);
        return search;
    }

    /**
     * 获取查询条件
     * @param keyword
     * @return
     */
    private static BoolQueryBuilder getQueryNameAndAddressBool(String keyword) {
            BoolQueryBuilder boolQueryBuilder = new BoolQueryBuilder();
            MultiMatchQueryBuilder matchWord = QueryBuilders.multiMatchQuery(keyword);
            // 中文
            matchWord.field("name.ik_word_field",2.0F)
                    .field("address.ik_word_field",2.0F);
            // 除了最佳匹配 其他的也要按照分数排序
            matchWord.tieBreaker(0.3f);
            // 分词匹配度向下取整
            matchWord.minimumShouldMatch("75%");
            PrefixQueryBuilder prefixNameBuilder = new PrefixQueryBuilder("name.ik_pinyin_field",keyword);
            PrefixQueryBuilder prefixAddressBuilder = new PrefixQueryBuilder("address.ik_pinyin_field",keyword);
            // 拼音支持词根 全拼+首字母 ik_smart分词后转拼音 全拼+首字母
            MultiMatchQueryBuilder matchPinYin = QueryBuilders.multiMatchQuery(keyword);
            matchPinYin.field("name.ik_pinyin_field")
                    .field("name.ik_smart_pinyin_field")
                    .field("address.ik_smart_pinyin_field")
                    .field("address.ik_pinyin_field");
            boolQueryBuilder.should(matchWord).should(matchPinYin).should(prefixNameBuilder).should(prefixAddressBuilder);

        return boolQueryBuilder;
    }

代码比较简单,需要说的就是布尔过滤器 中文的权限调高点,

// 分词匹配度向下取整
matchWord.minimumShouldMatch("75%");这个是指分词比例是多少,例如目标是九龙湖加油站,这个词根入分词的时候会被分解九龙湖、加油、站,当你搜索南京南站加油站时,会被解析南京、南站、加油、站这个和九龙湖加油站分词比例是50%所以不会被搜出来,应该不难理解,你输入的搜索分解词根命中数除以你输入的词语解析的总数、后面的代码就是should了

附近周边查询

  // 分页参数
        pageNum =  (pageNum < 1 ? 1:pageNum);
        NativeSearchQueryBuilder nativeSearchQueryBuilder = new NativeSearchQueryBuilder();
        nativeSearchQueryBuilder.withPageable(PageRequest.of(pageNum-1,pageSize));
        // 查询条件
        BoolQueryBuilder boolQueryBuilder = getQueryNameAndAddressBool(keyword,typeCode);
        // 距离参数
        GeoDistanceQueryBuilder distanceQueryBuilder = new GeoDistanceQueryBuilder("geoPoint");
        distanceQueryBuilder.point(lat,lng);
        // 5KM为周边
        distanceQueryBuilder.distance(5, DistanceUnit.KILOMETERS);
        GeoDistanceSortBuilder geoDistanceSortBuilder = new GeoDistanceSortBuilder("geoPoint",lat,lng);
        geoDistanceSortBuilder.unit(DistanceUnit.METERS);
        geoDistanceSortBuilder.order(SortOrder.ASC);
        nativeSearchQueryBuilder.withSort(geoDistanceSortBuilder);
        nativeSearchQueryBuilder.withFilter(distanceQueryBuilder);
        nativeSearchQueryBuilder.withQuery(boolQueryBuilder);
        // 返回
        SearchHits<GeoPointData> search = operations.search(nativeSearchQueryBuilder.build(), GeoPointData.class);
        return search;

代码比较简单就不说了有一个比较难的就是给你一条线路,找周边的点,像高德地图的沿途搜索

我们需要引入jts 主要的思路就是获取多边形坐标,然后查询,坑的是缓冲没有米的,需要换算,这个用的应该比较少,这个还是搞了好久。

 //创建一条直线
        String[] split = request.getCodeLine().split("-");
        Coordinate[] coordinates = new Coordinate[split.length];
        for (int i = 0; i < split.length; i++) {
            String sb = split[i];
            String[] split1 = sb.split(",");
            Coordinate coordinate = new Coordinate(Double.valueOf(split1[0]), Double.valueOf(split1[1]));;
            coordinates[i] = coordinate;
        }
        GeometryFactory gf=new GeometryFactory();
        Geometry gfLineString = gf.createLineString(coordinates);
        //缓冲区
        Double degree = (180/earthRadius/Math.PI)*(bufferDistance/1000);
        //缓冲区建立
        BufferOp bufOp = new BufferOp(gfLineString);
        bufOp.setEndCapStyle(BufferParameters.CAP_ROUND);
        Geometry bg = bufOp.getResultGeometry(degree);
        Coordinate[] bgCoordinates = bg.getCoordinates();
        //获取周边点
        List<GeoPoint> collect = Arrays.stream(bgCoordinates).map(item -> new GeoPoint(item.getY(), item.getX())).collect(Collectors.toList());

好了,写的可能比较乱,如果有什么疑问也可以在评论里面说出来,大家讨论下

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2021-11-25 08:11:03  更:2021-11-25 08:13:05 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/17 15:43:55-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码