with as 使用
window as使用
例子:
select *,
row_number() over w as num1,
rank() over w as num2,
avg(score) over (partition by clazz order by score desc rows between 1 PRECEDING and 1 FOLLOWING) as avg1,
max(score) over (partition by clazz order by score desc rows between 2 PRECEDING and CURRENT ROW) as max1,
avg(score) over (partition by clazz order by score desc range between 2 PRECEDING and 2 FOLLOWING) as avg2
from testwos
Window w as (partition by clazz order by score desc) ;
with as使用
例子:
with stu as (select students.*,score.score from students left join score on students.id=score.id)
with s1 as ((select id,sum(score) as score from stu group by id))
select * from s1
left join stu
on s1.id=stu.id;
select * from (select id,sum(score) as score from (select students.*,score.score from students left join score on students.id=score.id) as stu group by id) as s1
left join (select students.*,score.score from students left join score on students.id=score.id) as s2
on s1.id=s2.id;
行转列
1.相关函数说明 CONCAT(string A/col, string B/col…):返回输入字符串连接后的结果,支持任意个输入字符串; CONCAT_WS(separator, str1, str2,…):它是一个特殊形式的 CONCAT()。第一个参数剩余参数间的分隔符。分隔符可以是与剩余参数一样的字符串。如果分隔符是 NULL,返回值也将为 NULL。这个函数会跳过分隔符参数后的任何 NULL 和空字符串。分隔符将被加到被连接的字符串之间; COLLECT_SET(col):函数只接受基本数据类型,它的主要作用是将某字段的值进行去重汇总,产生array类型字段。 2.数据准备 3.需求 把星座和血型一样的人归类到一起。结果如下: 射手座,A 大海|凤姐 白羊座,A 孙悟空|猪八戒 白羊座,B 宋宋
4.创建本地constellation.txt,导入数据 [atguigu@hadoop102 datas]$ vi constellation.txt 孙悟空 白羊座 A 大海 射手座 A 宋宋 白羊座 B 猪八戒 白羊座 A 凤姐 射手座 A
5.创建hive表并导入数据
create table person_info(
name string,
constellation string,
blood_type string)
row format delimited fields terminated by "\t";
load data local inpath “/opt/module/datas/person_info.txt” into table person_info;
6.按需求查询数据
select
t1.base,
concat_ws('|', collect_set(t1.name)) name
from
(select
name,
concat(constellation, ",", blood_type) base
from
person_info) t1
group by
t1.base;
列转行
1.函数说明 EXPLODE(col):将hive一列中复杂的array或者map结构拆分成多行。 LATERAL VIEW 用法:LATERAL VIEW udtf(expression) tableAlias AS columnAlias 解释:用于和split, explode等UDTF一起使用,它能够将一列数据拆成多行数据,在此基础上可以对拆分后的数据进行聚合。
2.数据准备 3.需求 将电影分类中的数组数据展开。结果如下: 《疑犯追踪》 悬疑 《疑犯追踪》 动作 《疑犯追踪》 科幻 《疑犯追踪》 剧情 《Lie to me》 悬疑 《Lie to me》 警匪 《Lie to me》 动作 《Lie to me》 心理 《Lie to me》 剧情 《战狼2》 战争 《战狼2》 动作 《战狼2》 灾难
4.创建本地movie.txt,导入数据 [atguigu@hadoop102 datas]$ vi movie.txt 《疑犯追踪》 悬疑,动作,科幻,剧情 《Lie to me》 悬疑,警匪,动作,心理,剧情 《战狼2》 战争,动作,灾难
5.创建hive表并导入数据
create table movie_info(
movie string,
category array<string>)
row format delimited fields terminated by "\t"
collection items terminated by ",";
load data local inpath "/opt/module/datas/movie.txt" into table movie_info;
6.按需求查询数据
select
movie,
category_name
from
movie_info lateral view explode(category) table_tmp as category_name;
窗口函数
1.相关函数说明 OVER():指定分析函数工作的数据窗口大小,这个数据窗口大小可能会随着行的变而变化 CURRENT ROW:当前行 n preceding:往前n行数据 n following:往后n行数据 UNBOUNDED unbounded:起点, unbounded preceding 表示从前面的起点,unbound following表示到后面的终点 LAG(col,n):往前第n行数据 lag LEAD(col,n):往后第n行数据lead NTILE(n):ntile把有序分区中的行分发到指定数据的组中,各个组有编号,编号从1开始,对于每一行,NTILE返回此行所属的组的编号。注意:n必须为int类型。
2.数据准备:name,orderdate,cost jack,2017-01-01,10 tony,2017-01-02,15 jack,2017-02-03,23 tony,2017-01-04,29 jack,2017-01-05,46 jack,2017-04-06,42 tony,2017-01-07,50 jack,2017-01-08,55 mart,2017-04-08,62 mart,2017-04-09,68 neil,2017-05-10,12 mart,2017-04-11,75 neil,2017-06-12,80 mart,2017-04-13,94 3.需求 (1)查询在2017年4月份购买过的顾客及总人数 (2)查询顾客的购买明细及月购买总额 (3)上述的场景,要将cost按照日期进行累加 (4)查询顾客上次的购买时间 (5)查询前20%时间的订单信息 4.创建本地business.txt,导入数据 [atguigu@hadoop102 datas]$ vi business.txt 5.创建hive表并导入数据
create table business(
name string,
orderdate string,
cost int
) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';
load data local inpath "/opt/module/datas/business.txt" into table business;
6.按需求查询数据 (1)查询在2017年4月份购买过的顾客及总人数
select name,count(*) over ()
from business
where substring(orderdate,1,7) = '2017-04'
group by name;
(2)查询顾客的购买明细及月购买总额
select name,orderdate,cost,sum(cost) over(partition by month(orderdate)) from
business;
(3)上述的场景,要将cost按照日期进行累加
select name,orderdate,cost,
sum(cost) over() as sample1,
sum(cost) over(partition by name) as sample2,
sum(cost) over(partition by name order by orderdate) as sample3,
sum(cost) over(partition by name order by orderdate rows between UNBOUNDED PRECEDING and current row ) as sample4 ,
sum(cost) over(partition by name order by orderdate rows between 1 PRECEDING and current row) as sample5,
sum(cost) over(partition by name order by orderdate rows between 1 PRECEDING AND 1 FOLLOWING ) as sample6,
sum(cost) over(partition by name order by orderdate rows between current row and UNBOUNDED FOLLOWING ) as sample7
from business;
(4)查看顾客上次的购买时间
select name,orderdate,cost,
lag(orderdate,1,'1900-01-01') over(partition by name order by orderdate ) as time1, lag(orderdate,2) over (partition by name order by orderdate) as time2
from business;
(5)查询前20%时间的订单信息
select * from (
select name,orderdate,cost, ntile(5) over(order by orderdate) sorted
from business
) t
where sorted = 1;
求当前行和前2行 rows between and为固定格式
Rank排序
1.函数说明 RANK() 排序相同时会重复,总数不会变 DENSE_RANK() 排序相同时会重复,总数会减少 ROW_NUMBER() 会根据顺序计算 2.数据准备 表6-7 数据准备 name subject score 孙悟空 语文 87 孙悟空 数学 95 孙悟空 英语 68 大海 语文 94 大海 数学 56 大海 英语 84 宋宋 语文 64 宋宋 数学 86 宋宋 英语 84 婷婷 语文 65 婷婷 数学 85 婷婷 英语 78 3.需求 计算每门学科成绩排名。 4.创建本地movie.txt,导入数据
vim score.txt
5.创建hive表并导入数据
create table score(
name string,
subject string,
score int)
row format delimited fields terminated by "\t";
load data local inpath '/opt/module/datas/score.txt' into table score;
6.按需求查询数据
select name,
subject,
score,
rank() over(partition by subject order by score desc) rp,
dense_rank() over(partition by subject order by score desc) drp,
row_number() over(partition by subject order by score desc) rmp
from score;
name subject score rp drp rmp 孙悟空 数学 95 1 1 1 宋宋 数学 86 2 2 2 婷婷 数学 85 3 3 3 大海 数学 56 4 4 4 宋宋 英语 84 1 1 1 大海 英语 84 1 1 2 婷婷 英语 78 3 2 3 孙悟空 英语 68 4 3 4 大海 语文 94 1 1 1 孙悟空 语文 87 2 2 2 婷婷 语文 65 3 3 3 宋宋 语文 64 4 4 4
附
|