MapReduce 数据清洗(ETL)
“ETL,是英文 Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(Extract)、转换(Transform)、加载(Load)至目的端的过程。ETL 一词较常用在数据仓库,但其对象并不限于数据仓库。 在运行核心业务 MapReduce 程序之前,往往要先对数据进行清洗,清理掉不符合用户要求的数据。清理的过程往往只需要运行 Mapper 程序,不需要运行 Reduce 程序。
案例 1)去除日志中字段个数小于等于 11 的日志。 2)需要在 Map 阶段对输入的数据根据规则进行过滤清洗。 写 WebLogMapper 类
package com.xiaoqiu.mapreduce.ETL;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class WebLogMapper extends Mapper<LongWritable, Text, Text, NullWritable> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
boolean result = parseLog(line,context);
if (!result) {
return;
}
context.write(value, NullWritable.get());
}
private boolean parseLog(String line, Context context) {
String[] fields = line.split(" ");
if (fields.length > 11) {
return true;
}else {
return false;
}
}
}
编写 WebLogDriver 类
package com.xiaoqiu.mapreduce.ETL;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WebLogDriver {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(WebLogDriver.class);
job.setMapperClass(WebLogMapper.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(NullWritable.class);
job.setNumReduceTasks(0);
FileInputFormat.setInputPaths(job, new Path("F:\\share\\input\\web.log"));
FileOutputFormat.setOutputPath(job, new Path("F:\\share\\output"));
boolean b = job.waitForCompletion(true);
System.exit(b ? 0 : 1);
}
}
|