IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 大数据 -> Hadoop案例:WritableComparable实现分区内排序 -> 正文阅读

[大数据]Hadoop案例:WritableComparable实现分区内排序

目录

1.排序概述

2.WritableConparable排序案例实操

2.1需求

2.2 需求分析

2.3 数据准备

2.3代码实现

3.结果展示


1.排序概述

排序是Mapreduce中最重要的操作之一。无论是MapTask还是ReduceTask均会对数据按照key进行排序。该操作数据hadoop的默认行为。任何逻辑上的数据均会被排序,而不管业务逻辑上是否需要。那么如何根据业务需求,对数据进行排序呢?本文将基于下面这篇博文的基础上进行改进。

Hadoop案例:Partition类控制文件输出个数https://mp.csdn.net/mp_blog/creation/editor/121602844

2.WritableConparable排序案例实操

2.1需求

情景展现:客户经理拿着需求跟你说,这份文件除了将电话按不同省份文件输出以外,每个文件内部还要按照总流量进行排序。也就是说输出的文件首先按照总流量排序,再按照上行流量的顺序排序。

2.2 需求分析

(1)确定map函数的输入输出<key,value>的类型。这里输入是<LongWritable Text> 因为要对总流量排序,而mapreduce只能对key进行排序,因此map输出的类型为<Flowbean,Text>

(2)确定reduce函数的输入输出<key,value>的类型。map的输出为reduce的输入,因此reduce的输入类型<Flowbean,Text> 输出<Text,Flowbean>

(3)因为要分区,因此需要自定义分区函数继承Partition类实现getPatition()方法。分区是在map开始之后做的,因此这里的输入数据类型为map的输出数据类型<Flowbean,Text>

(4)因为要实现自定义排序,而排序的内容是Flowbean对象中的总流量,因此定义Flowbean类需要继承WritableComparable重写compareTo()方法、重写toString()方法、做序列化。

(5)在Driver类中的main方法中,把自定义的相关类关联起来

2.3 数据准备

2.3代码实现

自定义Flowbean包装上行流量、下行流量以及总流量

package com.yangmin.mapreduce.partitionandwritableComparable;

import org.apache.hadoop.io.WritableComparable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

public class FlowBean implements WritableComparable<FlowBean> {

    private long upFlow; //上行流量
    private long downFlow; //下行流量
    private long sumFlow; //总流量

    //提供无参构造

    public FlowBean() {
    }


    //生成三个get/set方法
    public long getUpFlow() {
        return upFlow;
    }

    public void setUpFlow(long upFlow) {
        this.upFlow = upFlow;
    }

    public long getDownFlow() {
        return downFlow;
    }

    public void setDownFlow(long downFlow) {
        this.downFlow = downFlow;
    }

    public long getSumFlow() {
        return sumFlow;
    }

    public void setSumFlow(long sumFlow) {
        this.sumFlow = sumFlow;
    }

    public void setSumFlow() {
        this.sumFlow = this.upFlow + this.downFlow;
    }
    //实现序列化
    @Override
    public void write(DataOutput out) throws IOException {
        out.writeLong(this.upFlow);
        out.writeLong(this.downFlow);
        out.writeLong(this.sumFlow);
    }

    @Override
    public void readFields(DataInput in) throws IOException {
        this.upFlow = in.readLong();
        this.downFlow = in.readLong();
        this.sumFlow = in.readLong();
    }

    @Override
    public int compareTo(FlowBean o) {
        // 按总流量倒序排列
        if (this.sumFlow > o.sumFlow){
            return -1;
        }else if (this.sumFlow < o.sumFlow){
            return 1;
        }else {
            //按照上行流量的正序排
            if (this.upFlow > o.upFlow){
                return -1;
            }else if (this.upFlow < o.upFlow){
                return 1;
            }else {
                return 0;
            }
        }
    }

    @Override
    public String toString() {
        return  upFlow + "\t" + downFlow + "\t" + sumFlow;
    }
}

自定义ProvincePartion类继承WritableComparable,注意这里的key,value输入类型

package com.yangmin.mapreduce.partitionandwritableComparable;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;

public class ProvincePartition2 extends Partitioner<FlowBean, Text> {
    @Override
    public int getPartition(FlowBean flowBean, Text text, int numPartitions) {
        int partition;

        String phone = text.toString();
        String sub = phone.substring(0, 3);

        //分支判断
        if ("136".equals(sub)) {
            partition = 0;
        }else if ("137".equals(sub)) {
            partition = 1;
        }else if ("138".equals(sub)) {
            partition = 2;
        }else if ("139".equals(sub)) {
            partition = 3;
        }else {
            partition = 4;
        }
        return partition;
    }
}

Mapp类,这里数据的输入输出类型。

package com.yangmin.mapreduce.partitionandwritableComparable;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;


public class FlowMapper extends Mapper<LongWritable, Text, FlowBean,Text> {
    private FlowBean outk = new FlowBean();
    private Text outv = new Text();

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        //获取一行数据
        String s = value.toString();

        //切割数据
        String[] split = s.split("\t");

        //封装outk outv
        outk.setUpFlow(Long.parseLong(split[1]));
        outk.setDownFlow(Long.parseLong(split[2]));
        outk.setSumFlow();
        outv.set(split[0]);

        //写出outk outv
        context.write(outk,outv);
    }
}

reducer类,输入是map的输出,输出的时候需要将key 与value调转过来。输出到文件的格式才是: 电话? 上行总流量 下行总流量 全部总流量。

package com.yangmin.mapreduce.partitionandwritableComparable;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class FlowReducer extends Reducer<FlowBean,Text,Text, FlowBean> {
    @Override
    protected void reduce(FlowBean key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
        //遍历values集合,循环写出,避免总流量相同的情况
        for (Text value : values) {
            //调整k,v位置,反向写出
            context.write(value, key);
        }
    }
}

Driver类:关联分区、设置reduceTask的个数

package com.yangmin.mapreduce.partitionandwritableComparable;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class FlowDriver {
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        //获取job对象
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);

        //关联map和reduce
        job.setMapperClass(FlowMapper.class);
        job.setReducerClass(FlowReducer.class);

        //设置map段输出kv
        job.setMapOutputKeyClass(FlowBean.class);
        job.setMapOutputValueClass(Text.class);

        //设置程序最终输出kv值
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);

        //关联分区
        job.setPartitionerClass(ProvincePartition2.class);

       //设置reducetask的个数
        job.setNumReduceTasks(5);

        //设置程序的输入输出路径
        FileInputFormat.setInputPaths(job,new Path("C:\\ZProject\\bigdata\\output\\output_writable"));
        FileOutputFormat.setOutputPath(job,new Path("C:\\ZProject\\bigdata\\output\\output_writable_comparable_partition"));

        //提交job
        boolean b = job.waitForCompletion(true);
        System.exit(b ? 0 : 1);
    }
}

3.结果展示

  大数据 最新文章
实现Kafka至少消费一次
亚马逊云科技:还在苦于ETL?Zero ETL的时代
初探MapReduce
【SpringBoot框架篇】32.基于注解+redis实现
Elasticsearch:如何减少 Elasticsearch 集
Go redis操作
Redis面试题
专题五 Redis高并发场景
基于GBase8s和Calcite的多数据源查询
Redis——底层数据结构原理
上一篇文章      下一篇文章      查看所有文章
加:2021-12-10 11:07:42  更:2021-12-10 11:07:45 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/17 7:51:09-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码