HDFS架构原理
1. HDFS架构剖析
1.1 HDFS整体概述
HDFS是Hadoop Distribute File System 的简称,意为:Hadoop分布式文件系统。是Hadoop核心组件之一,作为大数据生态圈最底层的分布式存储服务而存在。HDFS解决的问题就是大数据如何存储,它是横跨在多台计算机上的文件存储系统并且具有高度的容错能力。
HDFS集群遵循主从架构。每个群集包括一个主节点和多个从节点。在内部,文件分为一个或多个块,每个块根据复制因子存储在不同的从节点计算机上。主节点存储和管理文件系统名称空间,即有关文件块的信息,例如块位置,权限等。从节点存储文件的数据块。主从各司其职,互相配合,共同对外提供分布式文件存储服务。当然内部细节对于用户来说是透明的。
1.2 角色介绍
1.2.1 概述
HDFS遵循主从架构。每个群集包括一个主节点和多个从节点。其中:
NameNode****是主节点,负责存储和管理文件系统元数据信息,包括namespace目录结构、文件块位置信息等;DataNode是从节点,负责存储文件具体的数据块。
两种角色各司其职,共同协调完成分布式的文件存储服务。
SecondaryNameNode是主角色的辅助角色,帮助主角色进行元数据的合并。
1.2.2 Namenode
NameNode是Hadoop分布式文件系统的核心,架构中的主角色。它维护和管理文件系统元数据,包括名称空间目录树结构、文件和块的位置信息、访问权限等信息。基于此,NameNode成为了访问HDFS的唯一入口。
内部通过内存和磁盘两种方式管理元数据。其中磁盘上的元数据文件包括Fsimage内存元数据镜像文件和edits log(Journal)编辑日志。
在Hadoop2之前,NameNode是单点故障。Hadoop 2中引入的高可用性。Hadoop群集体系结构允许在群集中以热备配置运行两个或多个NameNode。
1.2.3 Datanode
DataNode是Hadoop HDFS中的从角色,负责具体的数据块存储。DataNode的数量决定了HDFS集群的整体数据存储能力。通过和NameNode配合维护着数据块。
1.2.4 Secondarynamenode
除了DataNode和NameNode之外,还有另一个守护进程,它称为secondary NameNode。充当NameNode的辅助节点,但不能替代NameNode。
当NameNode启动时,NameNode合并Fsimage和edits log文件以还原当前文件系统名称空间。如果edits log过大不利于加载,Secondary NameNode就辅助NameNode从NameNode下载Fsimage文件和edits log文件进行合并。
1.3 HDFS重要特性
1.3.1 主从架构
HDFS采用master/slave架构。一般一个HDFS集群是有一个Namenode和一定数目的Datanode组成。Namenode是HDFS主节点,Datanode是HDFS从节点,两种角色各司其职,共同协调完成分布式的文件存储服务。
1.3.2 分块机制
HDFS中的文件在物理上是分块存储(block)的,块的大小可以通过配置参数来规定,参数位于hdfs-default.xml中:dfs.blocksize。默认大小是128M(134217728)。
1.3.3 副本机制
为了容错,文件的所有block都会有副本。每个文件的block大小(dfs.blocksize)和副本系数(dfs.replication)都是可配置的。应用程序可以指定某个文件的副本数目。副本系数可以在文件创建的时候指定,也可以在之后通过命令改变。
默认**dfs.replication****的值是3**,也就是会额外再复制2份,连同本身总共3份副本。
1.3.4 Namespace
HDFS支持传统的层次型文件组织结构。用户可以创建目录,然后将文件保存在这些目录里。文件系统名字空间的层次结构和大多数现有的文件系统类似:用户可以创建、删除、移动或重命名文件。
Namenode负责维护文件系统的namespace名称空间,任何对文件系统名称空间或属性的修改都将被Namenode记录下来。
HDFS会给客户端提供一个统一的抽象目录树,客户端通过路径来访问文件,形如:hdfs://namenode:port/dir-a/dir-b/dir-c/file.data。
1.3.5 元数据管理
在HDFS中,Namenode管理的元数据具有两种类型:
1.3.6 数据块存储
文件的各个block的具体存储管理由DataNode节点承担。每一个block都可以在多个DataNode上存储。
|